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ABSTRACT

Motivation: Species tree estimation in the presence of incomplete

lineage sorting (ILS) is a major challenge for phylogenomic analysis.

Although many methods have been developed for this problem, little is

understood about the relative performance of these methods when

estimated gene trees are poorly estimated, owing to inadequate

phylogenetic signal.

Results: We explored the performance of some methods for estimat-

ing species trees from multiple markers on simulated datasets in

which gene trees differed from the species tree owing to ILS. We

included *BEAST, concatenated analysis and several ‘summary

methods’: BUCKy, MP-EST, minimize deep coalescence, matrix rep-

resentation with parsimony and the greedy consensus. We found that

*BEAST and concatenation gave excellent results, often with substan-

tially improved accuracy over the other methods. We observed that

*BEAST’s accuracy is largely due to its ability to co-estimate the gene

trees and species tree. However, *BEAST is computationally intensive,

making it challenging to run on datasets with 100 or more genes or

with more than 20 taxa. We propose a new approach to species tree

estimation in which the genes are partitioned into sets, and the spe-

cies tree is estimated from the resultant ‘supergenes’. We show that

this technique improves the scalability of *BEAST without affecting its

accuracy and improves the accuracy of the summary methods. Thus,

naive binning can improve phylogenomic analysis in the presence of

ILS.
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Supplementary information: Supplementary data are available

at Bioinformatics online.
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1 INTRODUCTION

Species tree estimation from multiple genes is often performed
using concatenation (also called ‘combined analysis’): alignments

are estimated for each gene and concatenated into a supermatrix,

which is then used to estimate the species tree. When gene trees

are concordant, concatenation can give accurate results; how-

ever, this approach to species tree estimation is potentially prob-
lematic when gene trees differ from the species tree (and hence

from each other) owing to several biological factors, including

gene duplication and loss, horizontal gene transfer and incom-

plete lineage sorting (ILS).
The best studied of these problems is species tree estimation in

the presence of ILS, which is based on the multi-species coales-
cent (Wakeley, 2009). Many methods have been developed to

estimate species trees in the presence of ILS, beginning with

the minimize deep coalescence (MDC) approach suggested in

Maddison (1997), and now including many different types of
methods [see Degnan and Rosenberg (2009); Knowles (2009)

for a discussion of some methods]. Some of these new methods
[for example, MP-EST (Liu et al., 2010) and the population tree

from BUCKy (Ané et al., 2007; Larget et al., 2010)] have been
proven to be statistically consistent in the presence of ILS.

In contrast, the greedy consensus (GC), majority consensus,

the concordance tree from BUCKy and MDC (Ané et al.,
2007; Degnan et al., 2009; Than and Rosenberg, 2011) can be

inconsistent in the presence of ILS (i.e. there are some parameter
settings under which these methods are inconsistent). The

Bayesian method *BEAST (Heled and Drummond, 2010) may
produce a statistically consistent point estimate (e.g. the MAP

tree) of the species tree, but a formal proof has not yet been

provided [however, see Steel (2010), which proves the statistical
consistency of gene tree estimation using Bayesian MCMCmeth-

ods]. Simulations suggest that when true gene trees differ
owing to ILS, concatenated analysis can produce incorrect esti-

mates of the species tree, sometimes with high confidence
(DeGiorgio and Degnan, 2010; Edwards et al., 2007; Kubatko

and Degnan, 2007; Larget et al., 2010; Leaché and Rannala,

2011; Liu et al., 2010; Salichos and Rokas, 2013), leading to
the conjecture that concatenated analyses are not statistically

consistent. However, statistical consistency or inconsistency is a
mathematical statement about performance in the limit and so

requires a formal proof. Thus, while the evidence strongly sug-
gests that, under conditions in which gene trees can differ owing

to ILS, concatenation can be statistically inconsistent but

*BEAST will be statistically consistent, these are still open
questions.

As a result of these studies and the growing awareness that ILS
can be present in many phylogenomic datasets, there is great

interest in using ILS-based estimation of species trees instead
of concatenated analysis (Degnan and Rosenberg, 2009;

Edwards, 2009; Huang et al., 2010; Knowles, 2009). However,
only a few studies have been published comparing ILS-based

methods and even fewer have compared concatenated analyses

to ILS-based methods. Performance in simulation has been
mixed, with ILS-based methods outperforming concatenation

in some cases but not all (DeGiorgio and Degnan, 2010;
Edwards et al., 2007; Heled and Drummond, 2010; Leaché and

Rannala, 2011; Liu et al., 2010). The performance of ILS-based
methods on biological datasets has also been mixed, with

concatenation often producing trees with high bootstrap support

that may not be completely correct, but ILS-based methods often
producing trees with low bootstrap support (Meredith et al.,

2011; Song et al., 2012). Thus, we still do not know much*To whom correspondence should be addressed.
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about the relative performance of ILS-based methods, how they
compare with methods (such as concatenation) that do not take

ILS into account and what factors impact the absolute and rela-

tive performance of methods.
In this article, we report on a simulation study to evaluate a

collection of methods for estimating species trees and gene trees

in the presence of ILS. Our simulation study includes datasets
generated under three model conditions from prior studies

(Chung and Ané, 2011; Yu et al., 2011b). One model condition

has 17-taxon datasets that evolve under a strong molecular clock,
and the other two model conditions have 11-taxon datasets that

do not evolve under a clock. The amount of ILS varies between

the three model conditions, ranging from relatively low amounts

to high amounts. Finally, estimated gene trees on these datasets
have low average bootstrap support due to insufficient phylogen-

etic signal, reflecting conditions often encountered when sam-

pling genes from throughout the genome. We study a wide

range of methods for estimating species trees from multiple mar-
kers, including *BEAST (Heled and Drummond, 2010), both the

population and concordance trees returned by BUCKy

(Ané et al., 2007; Larget et al., 2010), MP-EST (Liu et al.,

2010), Phylonet-MDC (Than et al., 2008; Yu et al., 2011a),
GC (also called the extended majority consensus), matrix repre-

sentation with parsimony (MRP) (Baum and Ragan, 2004) and

concatenation using maximum likelihood (CA-ML).
Our study revealed that many methods have poor accuracy

when the individual gene sequence alignments have low phylogen-

etic signal. This vulnerability to poor signal affects all methods,
but especially those that combine estimated gene trees; by com-

parison, *BEAST and CA-ML are relatively less impacted.
We developed an approach to address the vulnerability of spe-

cies tree methods to low phylogenetic signal. We randomly par-

titioned the genes into subsets (which we call ‘supergenes’),

estimated trees from these supergene alignments and then used
methods to estimate the species tree from the supergene trees.

This approach did not produce statistically significant changes in

accuracy on the 17-taxon datasets, but improved the accuracy of
the trees estimated by combining estimated gene trees, often sub-

stantially, on the 11-taxon datasets. Running *BEAST on the

binned supergene alignments did not impact its accuracy, but

did improve its scalability. Furthermore, when used with bin-
ning, several methods came close to being as accurate as

*BEAST, while being orders of magnitude faster than

*BEAST. Thus, this study suggests that highly accurate large-

scale phylogenomic analyses may be achievable through a naive
binning technique.

2 MATERIALS AND METHODS

See the Supplementary Materials for details.

2.1 Datasets

We used simulated 11-taxon (Chung and Ané, 2011) and 17-taxon

(Yu et al., 2011a, b) multi-gene datasets. The 11-taxon datasets have

100 genes, and the 17-taxon datasets have 32 genes. The protocols used

in the two studies were fairly similar; however, the 11-taxon datasets

reflect more heterogeneity, and hence are less idealized than the

17-taxon datasets. In each case, a model species tree was generated and

a set of gene trees within each species tree (with one haploid individual

sampled per species) produced under a coalescent process. This produces

gene trees that can differ topologically from their associated species tree

owing to ILS. DNA sequences were then simulated down each gene tree

under the Jukes-Cantor model. Hundred replicates were generated for

each model condition, and each replicate consisted of a set of true

sequence alignments (i.e. one alignment for each gene).

The 11-taxon and 17-taxon datasets differ in some regards. First, the

17-taxon datasets evolved under a molecular clock, but the 11-taxon

datasets did not. Second, the 11-taxon datasets have short sequences

(only 500 nucleotides), but the 17-taxon datasets have long sequences

(2000 nucleotides). In the 11-taxon model conditions, there is substantial

rate variation between the gene trees and species tree, but this is not true

for the 17-taxon model conditions. Finally, the model conditions also

varied in the amount of ILS, as we now discuss.

We calculated two statistics to evaluate the level of ILS in each model

condition: the ‘average clade distance’ between the true species tree and

the true gene trees and the percentage of the true gene trees that have the

same topology as the true species tree. The clade distance between two

rooted trees (i.e. the rooted analog of the bipartition distance) is the total

number of unique non-trivial clades (in one tree but not in both) divided

by 2n� 4. Thus, if two rooted trees on seven leaves share exactly two

clades in common, the clade distance is 60%. Using this metric, the

17-taxon datasets have the highest amount of ILS (average clade distance

25.7%). The 11-taxon datasets came in two forms, one with somewhat

lower (but still high) amounts of ILS (average clade distance 14.8%), and

one with low amounts of ILS (average clade distance 2.9%). We refer to

the two 11-taxon models as strongILS and weakILS, accordingly. The

percent of gene trees that match the species tree also fits with this relative

ranking: 73.1% for the 11-taxon weakILS datasets, 21.3% for the

11-taxon strongILS datasets and only 1.7% for the 17-taxon datasets.

Thus, the 17-taxon datasets have extremely high levels of ILS, but the

11-taxon strongILS also have a high level of ILS.

2.1.1 Selecting subsets of genes For the 17-taxon datasets, we used

the provided 8-gene and 32-gene datasets; for the 11-taxon datasets, we

sampled from the 100 genes to produce subsets with the desired number

of genes.

2.2 Gene tree estimation

We compared *BEAST, RAxML v. 7.3.1 (Stamatakis, 2006) and

FastTree-2 (Price et al., 2010), as gene tree estimators. We used 20 runs

of RAxML on each of the alignments, and retained the tree with the best

ML score; for FastTree-2, we used it with only one run (because it is

deterministic, it is not improved by multiple runs). For *BEAST, we ran

it as described below. We used RAxML with 400 bootstrap replicates for

BUCKy and for Phylonet.

2.3 Species tree methods

We include *BEAST, MP-EST, BUCKy-pop, BUCKy-con, CA-ML, the

GC, Phylonet-MDC and MRP; see below for details. With the exception

of *BEAST and CA-ML, these methods estimate the species tree by

combining estimated gene trees; we refer to these as ‘summary methods’.

For MP-EST, MRP and GC, we use the binary gene trees as input [these

methods either require binary gene trees or have not been shown to im-

prove by contracting low support branches (Yang and Warnow, 2011)].

We used *BEAST v. 1.6.2 (Heled and Drummond, 2010) in its default

setting, and used the default point estimates for the gene trees and species

tree. For a given *BEAST analysis, we discarded the first 10% of the trees

returned by the analysis, and then sampled one out of each 1000 of the

remaining trees. We ran *BEAST long enough to return ESS values that

were large enough to suggest possible convergence. Even after 150 h of

analysis, the ESS statistics for *BEAST on the 11-taxon 100-gene
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strongILS datasets were poor, suggesting that *BEAST had not

converged; therefore, we omit results of *BEAST for these datasets.

We used MP-EST (Liu et al., 2010) in its default setting, using

MAXROUND¼ 100 000, and with RAxML gene trees rooted at the

provided outgroup.

We used BUCKy (Ané et al., 2007) with the default setting to compute

two species tree estimations—the population tree (BUCKy-pop) and the

concordance tree (BUCKy-con). We computed gene tree distributions

using RAxML with bootstrapping and also using *BEAST as input to

BUCKy. On each model condition and number of genes, we ran BUCKy

using a sufficiently large number of MCMC iterations to reach suffi-

ciently low standard deviations for the concordance factors to suggest

possible convergence.

We used Phylonet v. 2.4 (Than et al., 2008) for a version of the NP-

hard MDC problem that takes gene tree branch support values into

consideration. Although MDC is not statistically consistent (Than and

Rosenberg, 2011), Phylonet-MDC can produce highly accurate species

trees (Yang and Warnow, 2011) when applied to gene trees in which all

the low support branches are collapsed. Phylonet provides a technique to

solve this version of MDC exactly, even for unrooted gene trees (Bayzid

and Warnow, 2012; Yu et al., 2011a, b), which can be used on datasets

with a small enough number of taxa; we used this exact method for MDC

for the 11-taxon datasets, and Phylonet’s heuristic method (which re-

stricts the solution space to those trees all of whose bipartitions come

from the input set of trees) for the 17-taxon datasets. We used Phylonet

on the ML gene trees with all branches having bootstrap support575%

collapsed.

We used PAUP* to estimate MRP, using the standard heuristic search,

and also to compute a GC (also called the ‘extended majority consensus’)

of the estimated gene trees. Both of these analyses are performed on

the binary gene trees estimated by maximum likelihood. We also studied

CA-ML, using RAxML to infer a species trees from the superalignment

(without partitioning), and using 10 independent runs (�N 10).

2.4 Criteria

We report tree error using the missing branch rate (also known as the FN

or ‘false negative’ rate), which is the proportion of internal branches in

the true tree defining bipartitions that are missing in the estimated tree.

The use of FN rates rather than Robinson–Foulds rates is owing to the

observation that some of the methods for estimating trees produce unre-

solved trees, and the Robinson–Foulds rates would be biased in favor of

these methods (Rannala et al., 1998). We tested for statistical significance

using the Wilcoxon signed rank test.

2.5 Experiments

The first experiment compared the ‘fast’ methods (all methods except

*BEAST and BUCKy) on 100 replicates of the 11-taxon and 17-taxon

datasets, varying the number of genes, using RAxML to estimate gene

trees. The second experiment compared the full set of methods on 20

replicates of these model conditions, again using RAxML to estimate

gene trees. We explored the accuracy of gene trees estimated by

RAxML, FastTree and *BEAST in the third experiment. The fourth

experiment evaluated the accuracy of species trees computed for gene

trees estimated by *BEAST. The fifth experiment then examined the

impact of binning genes into supergenes, using a simple ‘naive’ binning

technique.

3 RESULTS

We show results evaluating computational aspects of the differ-

ent methods, and then results of the five basic experiments

exploring accuracy. See the Supplementary Materials for add-

itional details.

3.1 Computational issues

The phylogenomic pipelines we studied differed dramatically in

terms of their running times, making some methods infeasible to

use on some datasets within the limits of this study. Due to space

limitations, we present a brief discussion of the computational

requirements of the different methods, and direct the interested

reader to the Supplementary Materials for full results.
Pipelines that used *BEAST took the most time, with running

times of 80–150h for the 50-gene datasets with 11 taxa; analyses

of the 100-gene datasets with 11 taxa did not converge, even in

150h. The pipelines with BUCKy, when used with distributions

computed using RAxML bootstrapping, took up to 5 h, but were

able to be run on even the 100-gene 11-taxon datasets. Pipelines

with Phylonet when used with the RAxML bootstrap trees

(restricted to the high support edges) took up to 2 h per dataset

(almost all of that for running RAxML). Pipelines with MRP,

GC and CA-ML took just a few minutes per dataset.
Because of these computational issues, we only ran BEAST on

unbinned datasets with at most 50 genes (and even these were

computationally intensive). We also did not run *BEAST or

unbinned BUCKy on more than 20 replicates for any model

condition. Therefore, in the remaining study, we show results

for the ‘fast’ methods (everything but *BEAST and BUCKy)

on 100 replicates of the model conditions, and we examine

*BEAST and BUCKy on only 20 replicates of the model condi-

tions. We do, however, show results using BUCKy with binning

on 100 replicates of some model conditions. In total, we estimate

that we used at least 5000 CPU h, just for the *BEAST runs.

3.1.1 Experiment 1 The first experiment explored the accuracy

of the ‘fast’ methods for estimating species trees, i.e. CA-ML,

MP-EST, MRP, Phylonet and GC; Figures 1–3. CA-ML had the

best accuracy, with large improvements over other methods on

the 11-taxon datasets and small improvements on the 17-taxon

datasets. All the improvements are statistically significant:

P50:003 for the 11-taxon strongILS with up to 100 genes and

the 11-taxon weakILS with up to 25 genes, and P � 0:04 for the

17-taxon datasets.

3.1.2 Experiment 2 We then evaluated BUCKy-pop, MP-EST,
*BEAST, CA-ML and BUCKy-con. Because *BEAST is com-

putationally intensive, the analyses were limited to 20 replicates

per datapoint. See Figures 4–6.
Note that *BEAST and CA-ML are the two most accurate

methods on these data, with the greatest improvement over the

other methods on the 11-taxon weakILS datasets and the least

improvement on the 17-taxon datasets. The relative performance

between CA-ML and *BEAST varied, with CA-ML better in

some cases and worse in others, and often the difference was

small.
BUCKy-pop is in third place, and even matched the accuracy

of *BEAST on the 11-taxon strongILS datasets with 25 genes. A

comparison between BUCKy-pop and BUCKy-con shows that

they had close accuracy in most cases, but that BUCKy-pop was

sometimes more accurate than BUCKy-con (e.g. on the 11-taxon
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strongILS datasets with 25 or 50 genes), with statistically signifi-

cant differences (P ¼ 0:003 and P ¼ 0:035, respectively).
Of these various observations, the most important here are the

following: CA-ML and *BEAST had the best accuracy on these

data; the gap between methods was least on the 17-taxon data-

sets, and greatest on the 11-taxon weakILS datasets; and all

methods became less accurate with increases in the amount of

ILS. It is easy to understand why the methods that are not

statistically consistent under ILS increase in error with the

degree of ILS, but not that easy to understand why *BEAST,

MP-EST and BUCKy-pop decrease in accuracy with increases in

ILS. Here we offer a possible explanation for this trend.

Recall that the conditions that favor ILS are short branches in

the species tree. Thus, the conditions that increase the amount of

ILS (i.e. short branches) also make it challenging to estimate the

gene trees. In fact, the weakILS model trees have long branches

[and are called ‘LB’ in Chung and Ané (2011)], and the

Fig. 4. Results for *BEAST, BUCKy, MP-EST and CA-ML on 20 rep-

licate 11-taxon weakILS datasets. We show means with standard error

bars. CA-ML and *BEAST return the true tree on the 25-gene case, and

all methods shown return correct trees on the 50-gene case. Therefore, no

results are shown for datasets with 100 genes

Fig. 1. Results for ‘fast’ methods on 100 replicate 11-taxon weakILS

models. CA-ML uses just the input alignments, and the other methods

use gene trees estimated using RAxML. We show means with standard

error bars

Fig. 2. Results for ‘fast’ methods on 100 replicate 11-taxon strongILS

models. We show results (means with standard error bars) for up to 100

genes
Fig. 5. Results for *BEAST, BUCKy, MP-EST and CA-ML on 20 rep-

licate 11-taxon strongILS datasets. We show means with standard error

bars

Fig. 3. Results for ‘fast’ methods on 100 replicate 17-taxon models. We

show means with standard error bars
Fig. 6. Results for *BEAST, BUCKy, MP-EST and CA-ML on 20

replicate 17-taxon datasets
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strongILS model trees have short branches [and are called ‘SB’ in

Chung and Ané (2011)], and gene trees estimated using RAxML

have lower error on the 11-taxon weakILS model conditions

than on the strongILS model conditions (30 versus 40%, respect-

ively). Therefore, it’s not at all surprising that species trees

estimated by combining gene trees under the highILS model

conditions would have higher error than species trees estimated

by combining gene trees under the lowILS model condition.

Finally, the 17-taxon datasets had the highest level of ILS, and

on these data the summary methods perform the worst. Note

that this vulnerability applies to all summary methods, even to

the statistically consistent methods like MP-EST and

BUCKy-pop.

3.1.3 Experiments 3 and 4 The next two experiments attempted
to understand why *BEAST was so much more accurate than

the summary methods. In Experiment 3, we evaluated the accur-

acy of the gene trees estimated by *BEAST, FastTree-2 and

RAxML for all three model conditions, and observed that

*BEAST produces substantially more accurate gene trees than

FastTree-2 and RAxML. For example, under the 11-taxon

weakILS model condition with 50 genes, gene trees estimated

by *BEAST had only 3.3% error while gene trees estimated by

RAxML had 31.9% error—a reduction of �90%. More gener-

ally, the greatest improvement was for the model condition with

the lowest rate of ILS (11-taxon weakILS), and the least

improvement was for the model condition with the highest rate

of ILS (17-taxon datasets). However, even on the 17-taxon data-

sets, the reduction was at least 50%. Results for the 17-taxon

datasets are given in Figure 7; see the Supplementary Materials

for the other results. These analyses also show that RAxML has

a small but statistically significant advantage over FastTree

(differences in missing branch rate of at most 1.7% on the

11-taxon weakILS conditions, 2.5% on the 11-taxon strongILS

conditions and 1.1% on the 17-taxon conditions).

In Experiment 4 (Supplementary Materials), we examine the

results of using the summary methods (i.e. BUCKy-con,

BUCKy-pop, Phylo-MDC, MP-EST, MRP and GC) on inputs

of gene trees estimated by *BEAST. These experiments show

that species trees estimated by combining gene trees estimated

by *BEAST are essentially as accurate as the species trees esti-

mated by *BEAST, and there are no statistically significant dif-

ferences. This suggests that the accuracy obtained by *BEAST is

primarily owing to its improved gene tree accuracy, rather than

to some sophisticated way of combining accurate gene trees.

3.1.4 Experiment 5 Because reduced phylogenetic signal in
individual gene sequence alignments impacts the summary meth-

ods, we considered the following approach:

� Step 1: Partition the genes into bins.

� Step 2: Within each bin, compute a ‘supergene’ alignment,

by concatenating the alignments for the genes in the bin.

� Step 3: Compute a ‘supergene tree’ using ML on each super-

gene alignment.

� Step 4: Estimate the species tree from the set of supergene

trees (using one of the ‘summary’ methods), or from the set

of supergene alignments (using *BEAST, for example).

Because this binning technique can put genes into the same bin

that may not share the same history, this approach is a blend of

CA-ML and the species tree estimation technique used in Step 4.

Our motivation for this approach is empirical. The hope is that

because each supergene has more sites, ML trees estimated on

each supergene might be more resolved than ML trees estimated

on the individual genes. If the genes placed in the same bin have

the same gene tree topology, then this approach could potentially

lead to higher accuracy gene trees. If the genes placed in the same

bin have different gene tree topologies, then they may not rep-

resent any gene tree that appears in the dataset, but may be

closer to the species tree. In either case, summary methods

applied to these supergene trees might be more accurate than

summary methods applied to the individual gene trees.

3.2 Evaluating binning on fast methods

In our initial experiment, we explored the impact of binning on

the fast methods on 100 replicate datasets of each model condi-

tion. We used bins with five genes each for the 11-taxon datasets,

and bins with four genes each for the 17-taxon datasets. We do

not present results for *BEAST (unbinned or binned) or BUCKy

on unbinned datasets owing to computational issues; however,

we do show results for BUCKy on binned datasets. Note also

that because we ran CA-ML without partitioning, binning has no

impact on CA-ML.
Results for the 11-taxon strongILS datasets are shown in

Figures 8–10. See the Supplementary Materials for results on

the 11-taxon weakILS datasets and 17-taxon 32-gene datasets.

Binning improved accuracy for all methods for the 11-taxon

datasets (both weakILS and strongILS), but not always statistic-

ally significantly. Results on the 17-taxon datasets showed that

binning did not have any statistically significant impact on any

method (P40:22).
On the 11-taxon weakILS datasets with 25 genes, all methods

improved in accuracy. These improvements were statistically sig-

nificant for MP-EST and Phylonet (P ¼ 0:002 and P ¼ 0:016,
respectively), but not for the other summary methods. However,

all methods were already highly accurate without binning.

Binning produced large reductions in error for many methods

on the 11-taxon strongILS datasets with 25 genes. Phylonet-

MDC showed the largest improvement (reduction from 12.6 to

9.6%, P ¼ 0:002), MP-EST showed the second-largest improve-

ment (reduction from 11.0 to 8.8%, P ¼ 0:021) and GC and

MRP showed the least improvement (reductions of at least

Fig. 7. Gene tree estimation error rates on 17-taxon datasets. Average

and standard error bars (over 20 replicates) of *BEAST, RAxML and

FastTree-2
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1%, but not statistically significant, P ¼ 0:16 and P ¼ 0:18,
respectively).
On 50 genes, all methods had reductions in error, with

Phylonet-MDC showing the largest improvement (reduction

from 8.9 to 4.1%, P510�5), GC showing the next largest

improvement (reduction from 9.6 to 5.4%, P510�4), MRP the

next largest improvement (reduction from 9.1 to 5.3%, P510�4)

and MP-EST with the smallest improvement (reduction from 7.3

to 5.7%, but not statistically significant, P ¼ 0:057).
On 100 genes, all methods had reductions in error, and again

Phylonet-MDC had the largest improvement (reduction from 5.4

to 2.4%, P510�3), GC had the next largest (reduction from 5.4

to 3.4%, P ¼ 0:007) and MRP and MP-EST showing smaller

improvements that were not statistically significant (P40:07).
Thus, binning improved the accuracy of all methods on the

11-taxon model conditions, with large reductions for the

strongILS conditions and smaller (but still significant) reductions

on the weakILS conditions. The greatest improvements were for

intermediate numbers of genes, in which the methods used with-

out binning still had some error (and hence could be improved),

but had enough genes so that binning produced a reasonable

number of supergenes. Binning had no statistically significant

impact on the 17-taxon model conditions with 100 replicates

(P40:22). CA-ML was still the most accurate of all tested meth-

ods, but some methods came close to the accuracy of CA-ML

when used with binning.

3.3 Evaluating binning on all methods

Owing to the computational effort in using *BEAST, we limited

the analysis to only 20 replicates of each model condition. We

limit this discussion to the impact of binning on *BEAST and

BUCKy because the analysis on 100 replicate datasets allowed us

to evaluate binning on the other methods with a higher number

of replicates. Results on the 11-taxon weakILS datasets with 25

genes are shown in the Supplementary Materials; all methods

improved, but the improvement was statistically significant

only for BUCKy-pop (reduction from 3.1 to 0.0%, P ¼ 0:03).
Results on the 20-replicate 17-taxon datasets (Supplementary

Materials) show no statistically significant differences (P40:3)
for BUCKy-pop, BUCKy-con and *BEAST, and all differences

were small (at most 0.5%). Results on 11-taxon strongILS data-

sets are shown in Figures 11 and 12. BUCKy-pop generally

improved with binning, but the results were not statistically sig-

nificant (P40:06). BUCKy-con also improved using binning

(reduction in error from 14.3 to 9.4% on 25 genes, from 12.5

to 5% on 50 genes and from 5.6 to 2.5% on 100 genes), and the

changes on 25 and 50 genes were statistically significant

(P ¼ 0:018 and P ¼ 0:005, respectively).
The impact of binning on *BEAST is interesting. On the

100-gene datasets, we were unable to run *BEAST to conver-

gence without binning even with 150 h of analysis; however,

*BEAST was able to reach acceptable ESS values in only 10 h

using four threads when run on 20 bins with five genes each.

Thus, the use of binning did not impact the accuracy of

Fig. 8. Results of binning experiments of the fast methods on 100 repli-

cates of the 11-taxon 25-gene strongILS datasets. Each bin contains five

genes. We omit BUCKy on unbinned genes and *BEAST (binned or

unbinned) because these are too slow to run on all 100 replicates

within our time limits. CA-ML is not impacted by binning because it

uses an unpartitioned analysis

Fig. 10. Results of the binning experiment for the fast methods on 100

replicates of the 11-taxon 100-gene strongILS datasets. Each bin contains

five genes. We omit BUCKy on unbinned genes and *BEAST (whether

binned or unbinned) because these are too slow to run on all 100 repli-

cates within our time limits. CA-ML is not impacted by binning because

it uses an unpartitioned analysis

Fig. 9. Results of the binning experiment for the fast methods on 100

replicates of the 11-taxon 50-gene strongILS datasets. Each bin contains

five genes. We omit BUCKy on unbinned genes and *BEAST (whether

binned or unbinned) because these are too slow to run on all 100 repli-

cates within our time limits. CA-ML is not impacted by binning because

it uses an unpartitioned analysis
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*BEAST, but it made it feasible to use *BEAST on datasets with

large numbers of genes.

4 DISCUSSION

The main purpose of this study was to evaluate methods for

estimating species trees in the presence of ILS under realistic

conditions. Because many real-world phylogenomic analyses

have to contend with genes with poor phylogenetic signal

(Salichos and Rokas, 2013), we specifically examined conditions

in which estimated gene trees were only partially resolved. As

expected, the number of genes and amount of ILS impacted the

accuracy of the methods we tested, so that all methods returned

more accurate trees with increasing numbers of genes and

decreasing levels of ILS. However, in addition to these expected

results, we make the following observations:

First, all the summary methods we studied were impacted by

gene tree estimation error. In contrast, although *BEAST and

CA-ML were also affected by the amount of phylogenetic signal
in the multiple sequence alignments, the impact was generally
less.

Second, CA-ML and *BEAST had similar accuracy, and were
generally more accurate than the summary methods we tested.
Third, *BEAST produced dramatically more accurate gene

trees than ML analyses on the alignments, and summary meth-
ods on these gene trees produced species trees as accurate as
*BEAST species trees, explaining why *BEAST produces more

accurate species trees than other methods.
Fourth, the naive binning technique we tested generally im-

proved coalescent-based methods. It improved the scalability of
*BEAST without impacting its accuracy, making it feasible to

use *BEAST on datasets with many genes. Binning also
improved the accuracy of species trees estimated using the sum-
mary methods we tested on the 11-taxon conditions, although

the degree of impact depended on the number of genes and the
level of ILS. Finally, binning had no statistically significant
impact on the 17-taxon conditions.

The observation that summary methods are vulnerable to
poor phylogenetic signal in the gene sequences is consistent
with the empirical studies reported by Salichos and Rokas

(2013) and Meredith et al. (2011), and this study would seem
to suggest that naive binning would be helpful for species tree
estimation under these circumstances. However, naive binning

could have unforeseen negative consequences if it puts genes
with different histories into the same bin. The good performance
of naive binning under the 11-taxon strongILS condition we

explored suggests that it may be somewhat robust in practice,
even under relatively high rates of ILS. However, because naive
binning did not improve the accuracy of summary methods on

the 17-taxon datasets (which had the highest rate of ILS), this
suggests that naive binning could reduce accuracy when the
amount of ILS is large. There is also a possibility that binning

will only be helpful when concatenation is more accurate than
the coalescent-based methods. Therefore, further research is
needed to assess the conditions in which binning improves or

reduces accuracy. See Supplementary Materials, Section 4, for
additional discussion about this issue.
One of the most interesting results in this article is the obser-

vation that CA-ML outperformed all the ILS-based methods
that operate by combining estimated gene trees. This observation
would seem to run counter to other simulation studies that have

shown that concatenation can return incorrect trees with high
confidence and can also produce trees that are less accurate than
trees estimated by ILS-based methods (DeGiorgio and Degnan,

2010; Edwards et al., 2007; Heled and Drummond, 2010; Larget
et al., 2010; Leaché and Rannala, 2011; Liu et al., 2010).
However, these studies used simulated datasets that evolve

under a strong molecular clock [a condition that may benefit
some coalescent-based methods more than concatenation
(DeGiorgio and Degnan, 2010)], few taxa and generally had

many genes relative to the number of taxa (and estimated gene
trees on these alignments may have been fairly accurate). In con-
trast, our study had 11- and 17-taxon datasets, at most 100 genes

and poorly estimated gene trees. Thus, it seems that there are
conditions under which some ILS-based methods might outper-
form CA-ML, and other conditions under which CA-ML might

outperform the ILS-based methods. In particular, it is possible

Fig. 12. Results of the binning experiment for all methods (except

*BEAST) on 20 replicate 11-taxon 100-gene strongILS datasets. Each

bin contains five genes. Average and standard error bars shown. We

omit *BEAST on unbinned genes because it could not run to convergence

on this dataset within the time limit; however, we show results for

*BEAST on the binned datasets. CA-ML returns the true tree on these

data

Fig. 11. Results of the binning experiment for all methods on 20 replicate

11-taxon 50-gene strongILS datasets. CA-ML is not impacted by binning

because it is an unpartitioned analysis. Each bin contains five genes.

Average and standard error bars shown
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that the critical issue is the number of genes, and that ILS-based
methods will have better accuracy than concatenation when the
number of genes is large enough. Clearly, further research is
needed to understand which conditions favor each type of

approach. See Section 4 in Supplementary Materials for more
discussion of these issues.

5 CONCLUSIONS AND FUTURE WORK

Under the conditions of our experiments (at least 11 taxa, at
most 100 genes and low signal per gene sequence alignment),
we observed relatively poor species tree estimations using stand-

ard summary methods, and more accurate results from concat-
enation or from *BEAST, a method that co-estimates gene trees
and species trees. However, the current co-estimation methods

(including *BEAST) are computationally intensive and may not
be feasible for use with more than 100 genes or more than 20
species. This study showed that a simple binning technique was

able to make dramatic improvements in scalability for *BEAST,
and generally improve the accuracy of summary methods, thus
making some of these methods nearly as accurate as *BEAST.
This study should not be interpreted as recommending the use

of naive binning, but instead as an indication of the potential for
binning techniques to improve species tree estimation. For ex-
ample, statistical techniques could be used to estimate whether a

set of genes is likely to have a common tree, so that bins would
only include genes expected to have a common history. Also,
while concatenation performed well in this study, we conjecture

that new techniques designed to handle markers with limited
phylogenetic signal, might outperform concatenation even
under these model conditions. Whether these new techniques
will use binning, or other ways of working with poorly estimated

gene trees, the potential for substantial advances in species tree
estimation could be great.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers, and C. Ané, J.
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