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Abstract

Haplotype is a pattern of Single Nucleotide Polymor-
phisms (SNP) on a single chromosome. Constructing a pair
of haplotypes from aligned and overlapping but intermixed
and erroneous fragments of the chromosomal sequences is
a nontrivial problem. Minimum error correction approach
states to minimize the number of errors to be corrected
so that the pair of haplotypes can be constructed through
consensus of the fragments. We give a heuristic algorithm
that searches through alternative solutions using a gain
measure and stops whenever no better solution can be
achieved. Time complexity of each iteration is O(m3k)
for an m × k SNP matrix where m and k are the number
of fragments (number of rows) and number of SNP sites
(number of columns) respectively in a SNP matrix. Alter-
native gain measure is also given to reduce running time.
Experimental results show that our algorithm outperforms
the best known previous algorithm.

Key words: Algorithm, Bioinformatics, DNA sequence,
SNP, Haplotype, Minimum Error Correction.

1. Introduction

A single DNA molecule is a long chain of nucleotides.
There are four such nucleotides which are represented by
the set of symbols {A,T,G,C}. Hence, a DNA can be
thought of as a string of symbols taken from this set. Every
diploid organism has a set of pairs of DNA molecules. Each
pair contains a paternal copy and a maternal copy of almost
identical sequence of nucleotides (considering no recombi-
nation). The copies differ at only few positions with respect
to their total length. Most of the times the variations occur

at single nucleotide positions (on average 1 in every 600
base pairs) that are separated by a non-empty identical sub-
sequence. Such variation is called Single Nucleotide Poly-
morphism and abbreviated as SNP [2, 1]. The nucleotide in
a SNP site is called allele. If a SNP site can have only two
nucleotides, it is called bi-allelic. If it can have more than
two alleles it is called a multi-allelic SNP. From now on, we
will consider the simplest case where only bi-allelic SNPs
occur in a specific pair of DNA.

Since the two copies are identical except at the SNP
sites, we can describe the two copies by two shorter se-
quences containing information only for SNPs. These two
sequences consisting of nucleotides only at SNP sites are
called the haplotypes. Haplotyping an individual deals with
determining a pair of haplotypes, one for each copy of a
given chromosome. The actual problem of haplotyping is to
find two haplotypes from the set of overlapping fragments
of both the chromosomes where fragments might contain
errors and to which copy of the chromosome a fragment be-
longs is not determined.

The problem of haplotyping has been studied exten-
sively. The general minimum error correction(MEC) prob-
lem was proved to be NP-hard [5]. It was also proved to be
NP-hard even if the SNP matrix is gapless [3]. A heuris-
tic method based on genetic algorithm has been proposed to
solve this problem in [7].

In this paper we give a heuristic algorithm for individual
haplotyping based on minimum error correction. The com-
plexity of each iteration is O(m3k) for a SNP matrix of di-
mension (m, k). The algorithm is inspired from the famous
Fiduccia and Mattheyses (FM) algorithm for bipartitioning
a hyper graph minimizing the cut size [4].

The rest of the paper is organized as follows. In Section 2
we present some definitions and preliminary ideas. In Sec-
tion 3 we present our algorithm for individual haplotyping.
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Section 4 deals with the performance comparison of our al-
gorithm with the most recent genetic algorithm. Finally we
conclude by suggesting some future directions in Section 5.

2. Preliminaries

In this section we give some definitions and preliminary
ideas.

Let S be the set of k bi-allelic SNP sites over which the
haplotypes will be constructed. Let F be the set of m frag-
ments produced from two copies of the chromosome. Each
fragment contains information of nonzero number of SNPs
in S. Because the SNPs are bi-allelic, let the two possi-
ble alleles for each SNP site be 0 and 1 where they can be
any two elements of the set {A, T, G,C}. Since all the nu-
cleotides are the same at the sites other than SNP sites, we
can remove these extraneous sites from all the fragments
and consider the fragments as sequences of SNP sites only.
Thus each fragment f ∈ F is a string of symbols {0, 1,−}
of length k where ‘−’ denotes an undetermined SNP named
as hole. All the fragments can be arranged in an m× k ma-
trix M = {Mij}, i = 1, . . . ,m, j = 1, . . . k, where row i is
a fragment of F and column j is a SNP of S. This matrix is
called SNP matrix.

Table 1. A SNP Matrix.
- - - -1101- - - - - - - - - - - -
- - - - -0001110101- - - - -
11010010011- - - - - - - - -
- - -10100- - -010- - - - - -
- - - - - - - - -10110101011
010111- - - - - - - - -01011

The consecutive sequence of ‘−’s that lie between two
non-hole symbols is called a gap. A gapless SNP matrix is
the one that has no gap in any of the fragments. In Table 1,
the first, second and third rows have no gaps while each of
the fourth and sixth rows has one gap.

A SNP matrix M = < M1,M2, . . . ,Mm > can be
viewed as an ordered set of m fragments where a fragment
Mi = < Mi1,Mi2, . . . ,Mik > is an ordered set of k al-
leles. A fragment Mi is called to cover the jth SNP if
Mij ∈ {0, 1} and called to skip the jth SNP if Mij = −.
Let Ms and Mt be two fragments. The distance between
two fragments, D(Ms,Mt), is defined as the number of
SNPs that are covered by both of the fragments and have
different alleles. Hence,

D(Ms,Mt) =
k∑

j=1

d(Msj ,Mtj) (1)

where d(x, y) is defined as

d(x, y) =
{

1 if x 6= − and y 6= − and x 6= y;
0 otherwise. (2)

In Table 1, the distance between second and third frag-
ment is 2, as they differ in the seventh and ninth SNP sites.

Two fragments Ms and Mt are said to be conflicting
if D(Ms,Mt) > 0. Let P (C1, C2) be a partition of M ,
where C1 and C2 are two sets of fragments taken from M
so that C1

⋃
C2 = M and C1

⋂
C2 = φ [7]. In Fig. 1(b),

an arbitrary partition corresponding to the SNP matrix of
Fig. 1(a) is shown. Then a SNP matrix M is an error-free
matrix if and only if there exists a partition P (C1, C2) of
M such that for any two fragments x, y ∈ Ci, i ∈ {1, 2}, x
and y are non-conflicting, i.e., D(x, y) = 0. Such a par-
tition is called an error-free partition.The partition in the
Fig. 1(b) is not error free since D(M1,M2) > 0 in C1 and
D(M5,M6) > 0 in C2 . The definition of the haplotype
Hi, i ∈ {1, 2} will be given in the next section.
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Figure 1. SNP matrix and its partition

We now focus on the general minimum error correction
problem. If a matrix M is not error-free, there will be no
error-free partition P . For such M there will be at least one
conflicting pair of fragments in each of the classes of all
possible partitions. Therefore it is impossible to construct
a haplotype that is non-conflicting with all the fragments in
its defining class of fragments. If we are given a partition
P (C1, C2) and two haplotypes H1 and H2 constructed from
P then the number of errors E(P ) that must be corrected
can be readily calculated by the following formula,

E(P ) =
2∑

i=1

∑
f∈Ci

D(f,Hi) (3)

The MEC problem asks to find a partition P that mini-
mizes the error function E(P ) over all such partitions of a
SNP matrix M .

3. A Heuristic Algorithm

In this section we give our heuristic algorithm based on
minimum error correction which we call HMEC throughout
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this paper.
Construction of a haplotype from an erroneous class C

requires correction of SNP values, i.e., alleles, in the frag-
ments. Since, we want to correct minimum number of er-
rors, we have to construct a haplotype which is minimum
conflicting with the fellow fragments of its defining class.
Therefore, for each SNP site, the haplotype should take
the allele that is present in majority of the fragments. Let
N0

j (C) be the number of fragments of a collection C that
have 0 in jth SNP. Similarly, N1

j (C) defines the number of
1s. Therefore, to minimize the number of errors E(P ) for
a specific partition P , the haplotype should be constructed
according to the methodology that Hij is 1 if N1

j (Ci) >

N0
j (Ci); Hij is 0 if N0

j (Ci) ≥ N1
j (Ci) and N0

j (Ci) 6= 0.
Finally Hij is a gap (-) if N1

j (Ci) = N0
j (Ci) = 0. Here

i ∈ {1, 2} and j = 1, 2, . . . , k. In Fig. 1(c) the two
haplotypes H1 and H2, associated with the partition P in
Fig. 1(b), are constructed by this method.

To find the best partition we will use a heuristic search.
This algorithm starts with a current partition Pc = P (M,φ)
and iteratively searches a better partition. In each iteration
the algorithm performs a sequence of transfer of fragments
from their present collection to the other one so that the
partition becomes less erroneous. A fragment’s transfer of
collection can both increase or decrease the error function
E(P ). Let the partition before transferring a fragment f be
Pp and the partition resulted is Pn. We define the gain of the
transfer as Gain(f) = E(Pp) − E(Pn). Let F = < fi >,
i = {1, 2, . . . ,m} be an ordering of all the fragments in
a partition P in such a way that fragment fi will precede
fragment fj if all the fragments before fi in F have already
been transferred to form an intermediate partition Pi and
Gain(fi) ≥ Gain(fj) over Pi. Hence, P1 = Pc at the start
of each iteration. We also define the cumulative gain of a
fragment ordering F upto nth fragment as CGain(F, n) =∑n

i=1 Gain(fi). Here Gain(fi) = E(Pi)−E(Pi+1). The
maximum cumulative gain, MCGain(F ) is defined as

MCGain(F ) = max
1 ≤ i ≤ m CGain(F, i).

We shall illustrate these terms, later in this section, with
an example.

In each iteration, the algorithm finds the current ordering
Fc of Pc and transfers only those fragments of Fc that can
achieve the MCGain(Fc) and the fragment that is the last
to be transferred is referred as fmax. Thus the algorithm
moves the fragments from one partition to another for re-
ducing the error function by an amount of MCGain(Fc).
The algorithm continues as long as MCGain(Fc) > 0 and
stops whenever MCGain(Fc) ≤ 0.

We now deal with data structures and complexity of our
algorithm. First, to find Fc in each iteration the algorithm
repeatedly transfers the fragment that is not transferred pre-

viously in this iteration and has maximum gain over all such
fragments. To accomplish this we use a locking mechanism.
At the beginning of each iteration all the fragments are set
free. The free fragment with maximum gain is found out
and tentatively transferred to the other collection. After the
transfer, the fragment is locked at the new collection. This
tentative transfer creates the first intermediate partition P1.
The algorithm then finds the next free fragment with max-
imum gain in P1 and transfers and locks that fragment to
create the P2. Thus, free fragments are transferred until all
the fragments are locked and the order of the transfer (Fc)
is stored in the log table along with the cumulative gains
(CGain). MCGain is the maximum CGain and fmax is
the fragment corresponding to MCGain in the log table.

After finishing all such tentative transfers, Pc becomes
an undefined partition. To change Pc to the desired “cur-
rent” partition of the next iteration, the algorithm checks
the log to find the MCGain(Fc) and fmax and rollback
the transfer of all the fragments that were transferred af-
ter fmax. When the rollback is completed, the Pc becomes
ready for the next iteration.

Later, while tentatively transferring a free fragment, the
algorithm needs to find the fragment with maximum gain
among the free fragments (which are not yet transferred).
This requires calculating gains for each of them. To calcu-
late the Gain(f) = E(Pp)−E(Pn) for a fragment we need
to calculate two error values of two different partitions: the
present intermediate partition and the next partition which
will be resulted if f is transferred. Each of these error func-
tion requires calculation of two new haplotypes from their
corresponding collections . Although E(Pp) and the hap-
lotypes of Pp can be found from the previous transfer, cal-
culation of E(Pn) requires construction of haplotypes of
Pn. Since, the difference between Pp and Pn is only one
transfer, we can introduce differential calculation of haplo-
types Hn

i , i ∈ {1, 2} of next partition from the haplotypes
of Hp

i , i ∈ {1, 2} of present partition. For this purpose, the
algorithm stores N1

j (Cp
i ) and N0

j (Cp
i ) values of the present

partition. After a transfer these values will either remain
same or be incremented or decremented by 1. That’s why
it is now possible to construct Hn

i , i ∈ {1, 2} in O(k) time.
To compute E(Pn) from the haplotypes requires O(mk)
time. Thus running time to compute the E(Pn) as well as
to compute Gain(f) is O(mk +k). And each iteration will
require O(m(m(mk + k) + k) + mk) ∼ O(m3k) running
time.

We now give an example illustrating a single iteration
of our algorithm. Fig. 2 demonstrates an example iteration
of HMEC. We consider that the current partition Pc = P1

is the partition given in Fig. 1(b) for the SNP matrix M of
Fig. 1(a). All the intermediate partitions Pi, i ∈ {1, . . . , 7}
are shown sequentially and the gains of each fragment over
the intermediate partitions are shown on the right of each

794794

Authorized licensed use limited to: Bangladesh Univ of Engineering and Tech. Downloaded on May 6, 2009 at 00:25 from IEEE Xplore.  Restrictions apply.



1

2

3

4

5

6

Gain(1)=0

Gain(2)=2

Gain(3)=2

Gain(4)=1

Gain(5)=1

Gain(6)=1

1

3

2

4

5

6

1

3

6

2

4

5

Gain(1)=−1

Gain(3)=−2

Gain(4)=−1

Gain(5)=0

1

6

3 4

5
2

Gain(1)=−1

Gain(3)=−3

1

2

3

5

4

6

5

6

4

2

3

1

1

6

5

3
2

4

P1

P2

P3 P5

P6

P7

P4

Gain(1)=−1

Gain(3)=−2

Gain(4)=−2

Gain(5)=1

Gain(6)=2

Gain(1)=−2

Gain(3)=−3

Gain(4)=−1

Gain(3)=−2

locked fragment

Figure 2. An example iteration of HMEC.

partition. The free fragment with maximum gain is marked
in each intermediate partition. For example, the maximum
gaining fragment on P2 is fragment 6 with gain 2. After
each transfer the transferred fragment is locked by a circle.
Here, the ordering Fc of the fragments is < 2, 6, 5, 4, 1, 3 >
which is also the order of locking of the fragments. This
ordering will be stored along with the CGains in the log
table. Table 2 demonstrates the resulting log table of the
illustrated iteration. All the tentative transfers after fmax

have to be rolled back so that the P3 becomes the next Pc.

Table 2. An example log table.
Log Table

Fc 2 6 5 4 1 3
CGain 2 4 4 3 2 0

We now give an approximate gain measure to make our
algorithm faster. We can use an approximation in the cal-
culation of the Gain(f) by using only the fragment f and
not using the m− 1 other fragments. The approximate gain
should be,

AppxGain(f) = D(Hp
i , f)−D(Hn

j , f) (4)

where Hp
i is the haplotype of f ’s present collection Cp

i of
partition Pp and Hn

j is the haplotype of f ’s next collection
Cn

j of partition Pn. This function reduces the run time of
calculating gain to O(k). The total run time of each iteration
will be O(m2k).

4. Performance Comparison

We ran our program on real biological data as well as
simulated data to demonstrate the performance of our pro-
gram. Rieder et al. presented some haplotypes data and we
used these as original biological data [6]. We also compared
our program with the most recent genetic algorithm.

We now proceed to our testing terminologies. We first
sample the original haplotype pair into many fragments
with certain coverage and error. Each fragment works as
distinct sample of the same specimen. Here coverage indi-
cates how many columns of SNP matrix have been sampled
out. The remaining slots are gaps. We then introduce some
specific amount of error into these samples. The number
of fragments, coverage and error rate are user given input
for our simulated sequencing technique. The simulation
was controlled in several ways. We varied the error rate
while number of fragments and coverage were kept con-
stant. Again coverage was varied while no of fragments
and error rate were kept constant. Every time we compared
our result with that of the Genetic algorithm.

We tested our algorithm and the Genetic algorithm thor-
oughly with data of various coverage and error rate. The
reconstruction rate of our algorithm is very much compara-
ble to that of the genetic algorithm and many of the times it
is better. The reconstruction capability of our algorithm ap-
proaches better with the increase of coverage value. Fig. 3
illustrates the nature of two algorithm for various coverage
value. The sharp slope of the corresponding graph of our
algorithm is the clear testimony of superiority for our algo-
rithm. We also simulate the algorithms for different error
rate keeping the coverage value constant. Table 3 depicts
that for advanced sampling technique, that is for low error
rate, the performance of our algorithm is simply tremen-
dous. For higher error rate it is also very much remark-
able and comparable to that of the Genetic algorithm. Our
algorithm outperforms the genetic algorithm, when time
needed to reconstruct the haplotype pair is the main con-
cern. Table 4 illustrates how fast our algorithm is compared
to the genetic algorithm when programs are executed on a
Pentium-III processor.

Another Salient feature of our algorithm is it’s determin-
istic nature. In every execution, our algorithm generates
same result for same data whereas Genetic algorithm, which
is fully random in nature, generates different result in dif-
ferent execution. We have observed standard deviation up
to 11 for Genetic algorithm whereas that of our algorithm is
obviously 0.

5. Conclusion

In this paper we gave a heuristic algorithm based on min-
imum error correction which is simpler, faster and more ef-
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Table 3. Demonstration of reconstruction rate
for different error rate.

Error rate HMEC Genetic
(percent) (percent) (percent)

2 100.00 86.453
5 99.37 91.202
7 98.73 91.264

15 84.81 86.708
20 84.81 88.164
25 93.67 82.406
30 79.75 88.355
35 92.40 81.898
40 70.89 78.482
50 85.44 78.986

Table 4. Demonstration of execution time.

Length of haplotype HMEC Genetic
(sec) (sec)

79 0.01 9.483
158 0.01 17.806
316 0.01 35.101
632 0.03 71.142
862 0.04 100.064
964 0.04 111.119

ficient than the known algorithms for haplotyping. The ac-
curacy of the algorithm can be improved by incorporating
some prior knowledge. For example, small groups of frag-
ments who are declared to be in the same haplotype can
be identified. Probabilistic methods like expectation max-
imization (EM) also deserve some consideration over such
optimization problems.

The most important feature of this heuristic algorithm
is its independency of gap. The position of holes (i.e.
gaps) in the SNP matrix will not create any difference to
the HMEC algorithm. For other haplotyping methods (i.e.
Longest haplotype reconstruction, Minimum fragment re-
moval), finding good heuristic algorithm would be interest-
ing.
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