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Haplotype is a pattern of single nucleotide polymorphisms (SNPs) on a single chromosome. Constructing a pair of haplotypes from
aligned and overlapping but intermixed and erroneous fragments of the chromosomal sequences is a nontrivial problem.Minimum
error correction approach aims to minimize the number of errors to be corrected so that the pair of haplotypes can be constructed
through consensus of the fragments. We give a heuristic algorithm (HMEC) that searches through alternative solutions using a
gain measure and stops whenever no better solution can be achieved. Time complexity of each iteration is𝑂𝑂𝑂𝑂𝑂3𝑘𝑘𝑘 for an𝑚𝑚𝑚𝑚𝑚 SNP
matrix where𝑚𝑚 and 𝑘𝑘 are the number of fragments (number of rows) and number of SNP sites (number of columns), respectively,
in an SNP matrix. Alternative gain measure is also given to reduce running time. We have compared our algorithm with other
methods in terms of accuracy and running time on both simulated and real data, and our extensive experimental results indicate
the superiority of our algorithm over others.

1. Introduction

A single DNA molecule is a long chain of nucleotides (base
pairs). ere are four such nucleotides which are represented
by the set of symbols {𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴. It is generally accepted that
genomes of two humans are almost 99% identical at DNA
level. However, at certain speci�c sites, variation is observed
across the human population which is commonly known as
“single nucleotide polymorphism” and abbreviated as “SNP”
[1]. e nucleotide involved in a SNP site is called allele. If a
SNP site can have only two nucleotides, it is called biallelic. If
it can have more than two alleles it is called amultiallelic SNP
[2]. From now on, we will consider the simplest case where
only bi-allelic SNPs occur in a speci�c pair of DNA.

e single nucleotide polymorphism (SNP) is believed to
be the most widespread form of genetic variation [3]. e

sequence of all SNPs in a given chromosome is called hap-
lotype. Haplotyping an individual deals with determining a
pair of haplotypes, one for each copy of a given chromosome.
A chromosome is a complicated structure of a DNAmolecule
bound by proteins. is pair of haplotypes completely de�ne
the SNP �ngerprints of an individual for a speci�c pair of
chromosomes. Given the two sequences of bases, haplotyping
is straight forward and just needs to iterate through both the
sequences and remove all the common alleles from them.
But haplotyping becomes difficult when we want to con-
struct haplotypes from sequencing data for higher reliability.
Sequencing data for a genome does not contain the complete
sequences of bases for a speci�c chromosome, rather it
provides a set of fragments of arbitrary length for the whole
genome. erefore, the actual problem of haplotyping is to
�nd two haplotypes from the set of overlapping fragments
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of both the chromosomes, where fragments might contain
errors and it is not known which copy of the chromosome
a particular fragment belongs to.

e problem of haplotyping has been studied extensively.
e general minimum error correction (MEC) problem was
proved to be NP-hard [4]. It was also proved to be NP-hard
even if the SNP matrix is gapless using a reduction from
the MAX-CUT problem [1]. A method based on genetic
algorithm has been proposed to solve this problem [5].
Several heuristic methods have also been proposed to �nd
haplotypes efficiently. HapCUT [6] and ReFHap [7] are two
of the most accurate algorithms in this regard.

In this paper, we give a heuristic algorithm for indi-
vidual haplotyping based on minimum error correction.
e complexity of each iteration is 𝑂𝑂𝑂𝑂𝑂3𝑘𝑘𝑘 for an SNP
matrix of dimension (𝑚𝑚𝑚 𝑚𝑚𝑚. e algorithm is inspired from
the famous Fiduccia and Mattheyses (FM) algorithm for
bipartitioning a hypergraph minimizing the cut size [8].
Extensive simulations indicate that HMEC outperforms the
genetic algorithms of Wang et al. [5] in terms of both
reconstruction rate and running time, and it has better (in
most cases) or comparable accuracy and signi�cantly smaller
running time than that of HapCUT [6], which is the most
accurate heuristic algorithm available. We also compared
HMEC with some other algorithms such as SpeedHap [9],
FastHare [10], MLF [11], 2 distance MEC [12], and SHR-
3 [13] using the HapMap-based instance generator and
comparison framework [14, 15].

e rest of the paper is organized as follows. In Section 2,
we present some de�nitions and preliminary ideas. In Section
3, we present our algorithm for individual haplotyping. We
describe the data structure and complexity of our algorithm
in Section 4. We report on an extensive performance study
evaluating HMEC with other available techniques in Section
5. Finally, we conclude in Section 6 by suggesting some
future research directions. An earlier version of this paperwas
accepted for presentation at BMEI 2008 [16].

2. Preliminaries

In this section, we give some de�nitions and preliminary
ideas.

Let 𝑆𝑆 be the set of 𝑘𝑘 bi-allelic SNP sites. Let 𝐹𝐹 be the set of
𝑚𝑚 fragments produced from two copies of the chromosome.
Each fragment contains information of nonzero number of
SNPs in 𝑆𝑆. Because the SNPs are bi-allelic, let the two possible
alleles for each SNP site be 0 and 1, where they can be any
two elements of the set {𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴 𝐴𝐴𝐴. Since all the nucleotides
are the same at the sites other than SNP sites, we can remove
these extraneous sites from all the fragments and consider the
fragments as the sequences of the SNP sites only. us each
fragment 𝑓𝑓 𝑓 𝑓𝑓 is a string of symbols {0, 1, −} of length 𝑘𝑘
where “−” denotes an undetermined SNPwhichwe call ahole.
All the fragments can be arranged in an 𝑚𝑚 𝑚 𝑚𝑚 matrix 𝑀𝑀 𝑀
{𝑀𝑀𝑖𝑖𝑖𝑖}, 𝑖𝑖 𝑖𝑖𝑖 𝑖 𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , where row 𝑖𝑖 is a fragment from

𝐹𝐹 and column 𝑗𝑗 is a SNP from 𝑆𝑆.ismatrix is called the SNP
matrix as follows

󶙀󶙀󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐

󶙘󶙘

−−−−1 1 0 1−−−−−−−−−−−−
−−−−−0 0 0 1 1 1 0 1 0 1−−−−−
1 1 0 1 0 0 1 0 0 1 1−−−−−−−−−
−−−1 0 1 0 0−−−0 1 0−−−−−−
−−−−−−−−−1 0 1 1 0 1 0 1 0 1 1
0 1 0 1 1−−−−−−−−−−0 1 0 1 1

󶙀󶙀󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐󶙐

󶙘󶙘

(1)

e consecutive sequence of “−”s that lies between two
nonhole symbols is called a gap. A gapless SNP matrix is the
one that has no gap in any of the fragments. In (1), the �rst,
second, and third rows have no gaps while each of the fourth
and sixth rows has one gap.

A SNP matrix 𝑀𝑀 𝑀 𝑀𝑀𝑀1,𝑀𝑀2,…, 𝑀𝑀𝑚𝑚⟩ can be viewed
as an ordered set of 𝑚𝑚 fragments where a fragment 𝑀𝑀𝑖𝑖 =
⟨𝑀𝑀𝑖𝑖𝑖,𝑀𝑀𝑖𝑖𝑖,…, 𝑀𝑀𝑖𝑖𝑖𝑖⟩ is an ordered set of 𝑘𝑘 alleles. A fragment
𝑀𝑀𝑖𝑖 is called to cover the 𝑗𝑗th SNP if 𝑀𝑀𝑖𝑖𝑖𝑖 ∈ {0, 1} and called
to skip the 𝑗𝑗th SNP if 𝑀𝑀𝑖𝑖𝑖𝑖 = −. Let 𝑀𝑀𝑠𝑠 and 𝑀𝑀𝑡𝑡 be two
fragments.e distance between two fragments,𝐷𝐷𝐷𝐷𝐷𝑠𝑠,𝑀𝑀𝑡𝑡),
is de�ned as the number of SNPs that are covered by both of
the fragments and have different alleles. Hence,

𝐷𝐷󶀡󶀡𝑀𝑀𝑠𝑠,𝑀𝑀𝑡𝑡󶀱󶀱 =
𝑘𝑘
󵠈󵠈
𝑗𝑗𝑗𝑗
𝑑𝑑 󶀢󶀢𝑀𝑀𝑠𝑠𝑠𝑠,𝑀𝑀𝑡𝑡𝑡𝑡󶀲󶀲 , (2)

where 𝑑𝑑𝑑𝑑𝑑𝑑 𝑑𝑑𝑑 is de�ned as

𝑑𝑑 󶀡󶀡𝑥𝑥𝑥𝑥𝑥 󶀱󶀱 = 󶁆󶁆
1, if𝑥𝑥𝑥 𝑥 and𝑦𝑦𝑦𝑦  and𝑥𝑥𝑥𝑥𝑥𝑥
0, otherwise.

(3)

In (1), the distance between the second and the third
fragment is two, as they differ in the seventh and ninth SNP
sites (columns).

Two fragments 𝑀𝑀𝑠𝑠 and 𝑀𝑀𝑡𝑡 are said to be con�icting if
𝐷𝐷𝐷𝐷𝐷𝑠𝑠,𝑀𝑀𝑡𝑡) > 0. Let 𝑃𝑃𝑃𝑃𝑃1,𝐶𝐶 2) be a partition of 𝑀𝑀, where
𝐶𝐶1 and 𝐶𝐶2 are two sets of fragments taken from 𝑀𝑀 so that
𝐶𝐶1 ⋃𝐶𝐶2 = 𝑀𝑀 and 𝐶𝐶1 ⋂𝐶𝐶2 = 𝜙𝜙 [5]. In Figure 1(b), an
arbitrary partition corresponding to the SNPmatrix of Figure
1(a) is shown. A SNP matrix𝑀𝑀 is an error-freematrix if and
only if there exists a partition 𝑃𝑃𝑃𝑃𝑃1,𝐶𝐶 2) of 𝑀𝑀 such that for
any two fragments 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥   𝑖𝑖, 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖  , 𝑥𝑥 and 𝑦𝑦 are non-
con�icting, that is, 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷   . Such a partition is called
an error-free partition. e partition in the Figure 1(b) is not
error free since𝐷𝐷𝐷𝐷𝐷1,𝑀𝑀2) > 0 in𝐶𝐶1 and𝐷𝐷𝐷𝐷𝐷5,𝑀𝑀6) > 0 in
𝐶𝐶2. For an error-free SNPmatrix, a haplotype𝐻𝐻𝑖𝑖, 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   is
constructed from its corresponding fragment class 𝐶𝐶𝑖𝑖 using
the following formula:

𝐻𝐻𝑖𝑖𝑖𝑖 =
󶀂󶀂󶀒󶀒
󶀊󶀊󶀒󶀒
󶀚󶀚

1, if at least one fragment in𝐶𝐶𝑖𝑖 has a 1 in 𝑗𝑗th SNP;
0, if at least one fragment in𝐶𝐶𝑖𝑖 has a 0 in 𝑗𝑗th SNP;
−, if all the fragments in𝐶𝐶𝑖𝑖 skips 𝑗𝑗th SNP;

(4)

where𝐶𝐶𝑖𝑖 is called the de�ning class of haplotype𝐻𝐻𝑖𝑖, and𝐻𝐻𝑖𝑖𝑖𝑖,
where 𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖   and 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗  , denotes the 𝑗𝑗th element of
the haplotype𝐻𝐻𝑖𝑖.
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P

(b)

H1 = 0 1 0 0 0 0 0 0 0 0

H2 = 0 1 0 0 0 0 0 0 0 1

(c)

F 1: SNP matrix and its partition.

We now describe the general minimum error correction
problem. If a matrix 𝑀𝑀 is not error-free, there will be no
error-free partition 𝑃𝑃. For such a matrix 𝑀𝑀, there will be at
least one con�icting pair of fragments in each of the classes for
all possible partitions. erefore it is impossible to construct
a haplotype that is non-con�icting with all the fragments in
its de�ning class of fragments. If we are given a partition
𝑃𝑃𝑃𝑃𝑃1, 𝐶𝐶2) and two haplotypes 𝐻𝐻1 and 𝐻𝐻2 constructed from
𝑃𝑃 then the number of errors 𝐸𝐸𝐸𝐸𝐸𝐸 that needs to be corrected
can be calculated by the following formula:

𝐸𝐸 (𝑃𝑃) =
2
󵠈󵠈
𝑖𝑖𝑖𝑖

󵠈󵠈
𝑓𝑓𝑓𝑓𝑓𝑖𝑖

𝐷𝐷 󶀡󶀡𝑓𝑓𝑓𝑓𝑓𝑖𝑖󶀱󶀱 . (5)

e MEC problem asks to �nd a partition 𝑃𝑃 that mini-
mizes the error function 𝐸𝐸𝐸𝐸𝐸𝐸 over all such partitions of an
SNP matrix𝑀𝑀.

3. A Heuristic Algorithm

In this section, we give our heuristic algorithm based on
minimum error correction which we call HMEC.

Construction of a haplotype from an erroneous class 𝐶𝐶
requires correction of SNP values, that is, alleles, in the frag-
ments.Wewant tominimize the number of error corrections.
erefore, for each SNP site, the haplotype should take the
allele that is present in the majority of the fragments. Let
𝑁𝑁0

𝑗𝑗(𝐶𝐶𝐶 be the number of fragments of a collection𝐶𝐶 that have
0 in the 𝑗𝑗th SNP. Similarly, 𝑁𝑁1

𝑗𝑗(𝐶𝐶𝐶 de�nes the number of 1s
[5]. erefore, to minimize the number of errors 𝐸𝐸𝐸𝐸𝐸𝐸 for
a speci�c partition 𝑃𝑃, the haplotype should be constructed
according to the following methodology:

𝐻𝐻𝑖𝑖𝑖𝑖 =

󶀂󶀂󶀒󶀒󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒󶀒󶀒
󶀚󶀚

1, if𝑁𝑁1
𝑗𝑗 󶀡󶀡𝐶𝐶𝑖𝑖󶀱󶀱 > 𝑁𝑁

0
𝑗𝑗 󶀡󶀡𝐶𝐶𝑖𝑖󶀱󶀱 ;

0, if𝑁𝑁0
𝑗𝑗 󶀡󶀡𝐶𝐶𝑖𝑖󶀱󶀱 ≥ 𝑁𝑁

1
𝑗𝑗 󶀡󶀡𝐶𝐶𝑖𝑖󶀱󶀱 and

𝑁𝑁0
𝑗𝑗 󶀡󶀡𝐶𝐶𝑖𝑖󶀱󶀱 ≠ 0;

−, if𝑁𝑁1
𝑗𝑗 󶀡󶀡𝐶𝐶𝑖𝑖󶀱󶀱 = 𝑁𝑁

0
𝑗𝑗 󶀡󶀡𝐶𝐶𝑖𝑖󶀱󶀱 = 0;

(6)

where 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖 and 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗  𝑗 𝑗 𝑗𝑗. In Figure 1(c), two
haplotypes 𝐻𝐻1 and 𝐻𝐻2, associated with the partition 𝑃𝑃 in
Figure 1(b), are constructed in this way.

We will use a heuristic search to �nd the best partition.
is algorithm starts with a current partition 𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃
and iteratively searches a better partition. In each iteration,
the algorithm performs a sequence of transfer of fragments

from their present collection to the other one so that the
partition becomes less erroneous. e transfer of a fragment
from one collection to the other can increase or decrease
the error function 𝐸𝐸𝐸𝐸𝐸𝐸. Let the partition before transferring
a fragment 𝑓𝑓 be 𝑃𝑃𝑝𝑝 and the partition resulted is 𝑃𝑃𝑛𝑛. We
de�ne the gain of the transfer as Gain(𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  𝑝𝑝) − 𝐸𝐸𝐸𝐸𝐸𝑛𝑛).
Figure 2 demonstrates an example calculation of the gain
measure. Let 𝐹𝐹 𝐹 𝐹𝐹𝐹𝑖𝑖⟩, 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖  𝑖𝑖𝑖 be an ordering
of all the fragments in a partition 𝑃𝑃 in such a way that
fragment 𝑓𝑓𝑖𝑖 will precede fragment 𝑓𝑓𝑗𝑗 if all the fragments
before 𝑓𝑓𝑖𝑖 in 𝐹𝐹 have already been transferred to form an
intermediate partition 𝑃𝑃𝑖𝑖 and Gain(𝑓𝑓𝑖𝑖) ≥ Gain(𝑓𝑓𝑗𝑗) over 𝑃𝑃𝑖𝑖.
Hence, 𝑃𝑃1 = 𝑃𝑃𝑐𝑐 at the start of each iteration. We also de�ne
the cumulative gain of a fragment ordering 𝐹𝐹 up to the 𝑛𝑛th
fragment as 𝐶𝐶Gain(𝐹𝐹𝐹𝐹𝐹𝐹𝐹   𝐹𝑛𝑛

𝑖𝑖𝑖𝑖 Gain(𝑓𝑓𝑖𝑖). Here Gain(𝑓𝑓𝑖𝑖) =
𝐸𝐸𝐸𝐸𝐸𝑖𝑖)−𝐸𝐸𝐸𝐸𝐸𝑖𝑖𝑖𝑖).emaximum cumulative gain,𝑀𝑀𝑀𝑀Gain(𝐹𝐹𝐹
is de�ned as

𝑀𝑀𝑀𝑀Gain (𝐹𝐹) = max
1≤𝑖𝑖𝑖𝑖𝑖

𝐶𝐶Gain (𝐹𝐹𝐹𝐹𝐹 ) . (7)

In Section 4, we shall describe these terms with an
example.

In each iteration, the algorithm �nds the current ordering
𝐹𝐹𝑐𝑐 of 𝑃𝑃𝑐𝑐 and transfers only those fragments of 𝐹𝐹𝑐𝑐 that can
achieve the𝑀𝑀𝑀𝑀Gain(𝐹𝐹𝑐𝑐) and the fragment that is the last to
be transferred is referred as 𝑓𝑓max. us the algorithm moves
from one partition to another reducing the error function by
an amount of𝑀𝑀𝑀𝑀Gain(𝐹𝐹𝑐𝑐). Please see Algorithm 1 for a basic
description of HMEC. e algorithm continues as long as
𝑀𝑀𝑀𝑀Gain(𝐹𝐹𝑐𝑐) > 0 and stops whenever𝑀𝑀𝑀𝑀Gain(𝐹𝐹𝑐𝑐) ≤ 0.

4. Data Structures and Complexity

is section deals with the data structures and the complexity
of our algorithm. Here we also suggest some approximation
to improve the performance of our algorithm.

First, to �nd𝐹𝐹𝑐𝑐 in each iteration, the algorithm repeatedly
transfers the fragment that is not transferred previously in
this iteration and has maximum gain over all such frag-
ments. To accomplish this, we use a locking mechanism.
At the beginning of each iteration, all the fragments are
set free. e free fragment with maximum gain is found
out and tentatively transferred to the other collection. Aer
the transfer, the fragment is locked at the new collection.
is tentative transfer creates the �rst intermediate partition
𝑃𝑃1. e algorithm then �nds the next free fragment with
maximum gain in 𝑃𝑃1 and transfer and lock that fragment to
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𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃
FREE_LOCKS()
CLEAR_LOG()
repeat always

while there is an unlocked fragment in 𝑃𝑃𝑐𝑐 do
begin

�nd a free fragment 𝑓𝑓 so that Gain(𝑓𝑓𝑓 is maximum
transfer 𝑓𝑓 to the other class
update the haplotypes aer the transfer
LOCK(𝑓𝑓)
LOG_RECORD(𝑓𝑓, Gain(𝑓𝑓𝑓)

end do
FREE_LOCKS()
check the log and �nd𝑀𝑀𝑀𝑀Gain(𝐹𝐹𝑐𝑐) and 𝑓𝑓max
if 𝑀𝑀𝑀𝑀Gain(𝐹𝐹𝑐𝑐) > 0

begin
set new 𝑃𝑃𝑐𝑐 by rolling back the transfers that occurred
aer the transfer of 𝑓𝑓max
calculate haplotypes of 𝑃𝑃𝑐𝑐
CLEAR_LOG()
continue with the the loop

end if
else

begin
terminate the algorithm and output current haplotypes

end else
end repeat

A 1: e HMEC Algorithm.

create the 𝑃𝑃2. us, free fragments are transferred until all
the fragments are locked and the order of the transfer (𝐹𝐹𝑐𝑐)
is stored in the log table along with the cumulative gains
(𝐶𝐶Gain). 𝑀𝑀𝑀𝑀Gain is the maximum 𝐶𝐶Gain and 𝑓𝑓max is the
fragment corresponding to𝑀𝑀𝑀𝑀Gain in the log table.

Aer �nishing all such tentative transfers, 𝑃𝑃𝑐𝑐 becomes an
unde�ned partition. To change 𝑃𝑃𝑐𝑐 to the desired “current”
partition of the next iteration, the algorithm checks the log to
�nd the𝑀𝑀𝑀𝑀Gain(𝐹𝐹𝑐𝑐) and 𝑓𝑓max, and rollback the transfer of
all the fragments that were transferred aer 𝑓𝑓max. When the
rollback completes, 𝑃𝑃𝑐𝑐 becomes ready for the next iteration.

While tentatively transferring a free fragment, the algo-
rithm needs to �nd the fragment with maximum gain among
the free fragments (which are not yet transferred). is
requires calculating gains for each of them. To calculate
the Gain(𝑓𝑓𝑓𝑓  𝑓𝑓𝑓𝑓𝑓𝑝𝑝) − 𝐸𝐸𝐸𝐸𝐸𝑛𝑛) for a fragment, we need
to calculate two error values of two different partitions:
the present intermediate partition and the next partition
which will be resulted if 𝑓𝑓 is transferred. Each of these
error function requires calculation of two new haplotypes
from their corresponding collections (see Figure 2). Although
𝐸𝐸𝐸𝐸𝐸𝑝𝑝) and the haplotypes of 𝑃𝑃𝑝𝑝 can be found from the
previous transfer, calculation of 𝐸𝐸𝐸𝐸𝐸𝑛𝑛) requires construction
of haplotypes of 𝑃𝑃𝑛𝑛. Since, the difference between 𝑃𝑃𝑝𝑝 and 𝑃𝑃𝑛𝑛
is only one transfer, we can introduce differential calculation
of haplotypes 𝐻𝐻𝑛𝑛

𝑖𝑖 , 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖 of next partition from the
haplotypes of 𝐻𝐻𝑝𝑝

𝑖𝑖 , 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖 of present partition. For this
purpose, the algorithm stores𝑁𝑁1

𝑗𝑗(𝐶𝐶
𝑝𝑝
𝑖𝑖 ) and𝑁𝑁

0
𝑗𝑗(𝐶𝐶

𝑝𝑝
𝑖𝑖 ) values of

the present partition. Aer a transfer these values will either
remain same or be incremented or decremented by 1. at
is why it is now possible to construct 𝐻𝐻𝑛𝑛

𝑖𝑖 , 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖 in 𝑂𝑂𝑂𝑂𝑂𝑂
time. To compute 𝐸𝐸𝐸𝐸𝐸𝑛𝑛) from the haplotypes requires𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
time. us running time to compute the 𝐸𝐸𝐸𝐸𝐸𝑛𝑛) as well as to
compute Gain(𝑓𝑓𝑓 is𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂 𝑂𝑂𝑂.

For each intermediate partition𝑃𝑃𝑖𝑖, 𝑖𝑖 𝑖 𝑖𝑖𝑖 𝑖𝑖𝑖 , we need to
compute Gain measures for𝑚𝑚𝑚𝑚𝑚  unlocked fragments to �nd
the maximum one. e transfer of this fragments requires
updating of𝑁𝑁1

𝑗𝑗(𝐶𝐶𝑖𝑖) and𝑁𝑁
0
𝑗𝑗(𝐶𝐶𝑖𝑖), 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖 and 𝑗𝑗 𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗𝑗    .

Hence, it also needs 𝑂𝑂𝑂𝑂𝑂𝑂 time to run. Finally, there will be
𝑚𝑚 such transfer in each iteration and maximum𝑚𝑚 rollbacks.
us each iteration will require𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 𝑂 𝑂𝑂𝑂 𝑂𝑂𝑂𝑂𝑂𝑂 𝑂
𝑂𝑂𝑂𝑂𝑂3𝑘𝑘𝑘 running time.

We now give an example illustrating a single iteration of
our algorithm. Figure 3 demonstrates an example iteration of
HMEC. We consider that the current partition 𝑃𝑃𝑐𝑐 = 𝑃𝑃1 is
the partition given in Figure 1(b) for the SNP matrix 𝑀𝑀 of
Figure 1(a). All the intermediate partitions 𝑃𝑃𝑖𝑖, 𝑖𝑖 𝑖 𝑖𝑖𝑖𝑖 𝑖 𝑖𝑖
are shown sequentially and the gains of each fragment over
the intermediate partitions are shown on the right of each
partition. e free fragment with maximum gain is marked
in each intermediate partition. For example, the fragment
with the maximum gain in 𝑃𝑃2 is fragment 6 which has gain
two. Aer each transfer, the transferred fragment is shown
locked by a circle. Here, the ordering 𝐹𝐹𝑐𝑐 of the fragments
is ⟨2, 6, 5,1,  4, 3⟩ which is also the order of locking of the
fragments.is order will be stored along with the𝐶𝐶Gains in
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F 2: An example of Gain calculation.
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F 3: An example iteration of HMEC.e current partition 𝑃𝑃𝑐𝑐 = 𝑃𝑃1 is the partition given in Figure 1(b) for the SNPmatrix𝑀𝑀 of Figure
1(a). Locked fragments are indicated by circles.

the log table. Figure 4 demonstrates the resulting log table of
the illustrated iteration. All the tentative transfers aer 𝑓𝑓max
have to be rolled back so that the 𝑃𝑃3 becomes the next 𝑃𝑃𝑐𝑐.

We now give an approximate gain measure to make our
algorithm faster. For large SNPmatrix,𝑂𝑂𝑂𝑂𝑂3𝑘𝑘𝑘 running time
is critical to the performance of the algorithm.We can use an
approximation in the calculation of theGain(𝑓𝑓𝑓 by using only
the fragment 𝑓𝑓 and not using the𝑚𝑚𝑚 𝑚 other fragments. e
approximate gain should be

AppxGain 󶀡󶀡𝑓𝑓󶀱󶀱 = 𝐷𝐷 󶀢󶀢𝐻𝐻𝑝𝑝
𝑖𝑖 , 𝑓𝑓󶀲󶀲 − 𝐷𝐷 󶀢󶀢𝐻𝐻𝑛𝑛

𝑗𝑗 , 𝑓𝑓󶀲󶀲 . (8)

Here 𝐻𝐻𝑝𝑝
𝑖𝑖 is the haplotype of 𝑓𝑓’s present collection 𝐶𝐶𝑝𝑝

𝑖𝑖 of
partition𝑃𝑃𝑝𝑝, and𝐻𝐻

𝑛𝑛
𝑗𝑗 is the haplotype of𝑓𝑓’s next collection𝐶𝐶

𝑛𝑛
𝑗𝑗

of partition 𝑃𝑃𝑛𝑛. is function ignores the effect of fragments
other than 𝑓𝑓 on Gain(𝑓𝑓𝑓, but reduces the run time of gain
calculation to 𝑂𝑂𝑂𝑂𝑂𝑂. erefore, the total run time of each
iteration will be𝑂𝑂𝑂𝑂𝑂2𝑘𝑘𝑘.

5. Performance Comparison

In this section, we demonstrate the performance of our
algorithm using both real biological and simulated datasets.
We compared our algorithm with GMEC [5] and HapCUT
[6]. We performed the simulation using the data from
angiotensin-converting enzyme (ACE) [17] and public Daly
set [18] to compare with GMEC [5], and used the HuRef data
[19] to compare with HapCUT. We also compared HMEC
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F 4: e log table corresponding to the iteration illustrated in
Figure 3.
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F 5:e comparison of HMEC and GMEC on ACE. From top
to bottom, coverage = 75%, coverage = 50%, coverage = 25%.
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F 6: Reconstruction rate versus coverage value.

with some other algorithms (SpeedHap [9], FastHare [10],
MLF [11], 2 distance MEC [12], SHR-3 [13]) using ReHap
website interface [15], which is an HapMap-based instance
generator and comparison framework [14].

5.1. Comparison with GMEC. In this section, we compare
the performance of our algorithmwith the genetic algorithm,
which we call GMEC, described in [5].

We �rst sample the original haplotype pair into many
fragments with different coverage and error rates. Each
fragment works as a distinct sample of the same specimen.
Here coverage rate indicates the percentage of the total
columns of the SNP matrix that have been sampled out. e
remaining slots are gaps. We then introduce some speci�c
amount of error into these samples. e simulation was
controlled in several ways. We varied the error rate while
number of fragments and coverage rate were kept constant.
Also, coverage was varied while number of fragments and
error rate were kept constant.

Notice that the way we introduced error and controlled
the coverage rate is not necessarily same as that of [5].
erefore, the reconstruction rates of the branch and bound
algorithm described in [5], which is an exact algorithm,
should not be compared with those of HMEC.

5.1.1. Experiment on Angiotensin-Converting Enzyme (ACE).
Angiotensin-converting enzyme catalyses the conversion of
angiotensin I to the physiologically active peptide angiotensin
II, which controls �uid-electrolyte balance and systematic
blood pressure. Because it has a key function in the renin-
angiotensin system, many association studies have been per-
formed with DCP1 (encode angiotensin-converting anzyme)
[20]. Rieder et al. completed the genomic sequencing of the
DCP1 gene from 11 individuals and reported 78 SNP sites in
22 chromosomes [17].

We take six pairs of haplotypes to perform the simulation.
We generate 50 fragments from each of these haplotype
pairs with varying coverage and error rate. We perform the
simulation for three different coverage rates (25%, 50%, and
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F 7: e comparison of HMEC and GMEC on Daly set. From
top to bottom, coverage = 75%, coverage = 50%, coverage = 25%.

75%). For each of these coverage rates, we perform our
simulation for different error rates such as 5%, 10%, 15%,
20%, 25%, 30%, and 50%. In every case, we compare our
algorithm with GMEC. Figure 5 illustrates the comparison
that bears the clear testimony to the superiority of our algo-
rithm. For most instances, the reconstruction rate achieved
by our algorithm is 100% or greater than 98%. Only for a
few cases with very high error rate and low coverage value,
the reconstruction rate falls below 95%. We also perform
the experiment for different coverage rates while keeping
the error rate constant. Figure 6 illustrates the performance
of these two algorithms for various coverage values. Here
also, our algorithm clearly outperforms the genetic algorithm
except for very low coverage value (which is unrealistic).

T 1: Running time of HMEC andGMEC on simulated datasets.

Length of haplotype HMEC GMEC
(sec) (sec)

78 0.002 6.172
156 0.016 11.437
312 0.015 22.500
624 0.031 45.328
780 0.031 60.766
936 0.047 72.343

5.1.2. Simulation on Data from Chromosome 5q31. In this
section, we discuss our simulation results on the data from
public Daly set. Daly et al. reported a high-resolution analysis
of a haplotype structure across 500 kb on chromosome 5q31
using 103 SNPs in a European derived population which
consists of 129 trios [18, 20].

We performed the experiment exactly in the same way
that we did for angiotensin-converting enzyme. Figure 7
demonstrates the results. Experimental results suggest that
HMEC is much better than the genetic algorithm. Again, for
most cases, the reconstruction rate achieved by our algorithm
is 100% or greater than 98%. For every instance, our algo-
rithm exhibits better performance than that of GMEC.

5.1.3. Experiment on Simulated Data. We used simulated
data for further evaluation of HMEC. One of the very
important advantages of our algorithm is that it takes very
short time to reconstruct the haplotypes. Our algorithm is
much faster than the GMEC. Table 1 shows the running time
of HMEC and GMEC. Here, we perform the simulation by
varying the length (length denotes the number of SNP sites in
the haplotype pair) of the haplotypes while �xed the value of
the coverage rate and the error rate at 50%. Since haplotypes
with such varying lengths are not available, we rely on the
simulated data. Clearly, HMEC is much faster than GMEC.
For example, while HMEC can reconstruct a haplotype with
936 sites in a fraction of a second, GMEC takes 72 seconds.

5.2. Comparison with HapCUT. HapCUT [6] is one of the
most accurate heuristic algorithms for individual haplotyp-
ing. HapCUT uses a random initial haplotype con�guration
and builds a graph. It computes max-cut on the graph to
�nd the position to �ip and iterates until no improvement
in MEC score is achieved. We have performed extensive
experiments to compare the performance ofHMECandHap-
CUT. Experimental results suggest that although HapCUT is
reliable, its running time is too large to be a realistic choice
for whole genome haplotyping. Our algorithm computes the
haplotypes signi�cantly faster than HapCUT without losing
accuracy.

We used the �ltered HuRef data from Levy et al. [19]
to evaluate the performance. We generated several test data
sets varying the coverage and error rate, and tested the
performance of HMEC and HapCUT on these data sets. e
results are shown in Tables 2, 3, 4, and 5.
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T 2: Reconstruction rate and running time of HapCUT and HMEC with 5% coverage on HuRef data.

Error rate HapCUT HMEC
Reconstruction rate Time (sec) Reconstruction rate Time (sec)

10 0.986 40.582 0.859 0.119
15 0.913 38.282 0.889 0.125
20 0.875 46.324 0.811 0.129
25 0.902 47.101 0.827 0.130
30 0.840 39.196 0.802 0.125
40 0.694 44.792 0.665 0.129

T 3: Reconstruction rate and running time of HapCUT and HMEC with 10% coverage on HuRef data.

Error rate HapCUT HMEC
Reconstruction rate Time (sec) Reconstruction rate Time (sec)

10 0.988 76.081 0.966 0.141
15 0.954 90.206 0.948 0.154
20 0.953 81.169 0.957 0.144
25 0.952 74.924 0.923 0.142
30 0.951 81.828 0.893 0.177
40 0.934 69.748 0.814 0.169

T 4: Reconstruction rate and running time of HapCUT and HMEC with 25% coverage on HuRef data.

Error rate HapCUT HMEC
Reconstruction rate Time (sec) Reconstruction rate Time (sec)

10 0.988 184.642 1.000 0.156
15 0.988 171.698 1.000 0.167
20 0.988 134.406 0.998 0.163
25 0.988 133.966 0.998 0.155
30 0.987 136.572 0.996 0.172
40 0.985 171.334 0.960 0.161

T 5: Reconstruction rate and running time of HapCUT and HMEC with 35% coverage on HuRef data.

Error rate HapCUT HMEC
Reconstruction rate Time (sec) Reconstruction rate Time (sec)

10 0.988 181.025 1.000 0.158
15 0.988 132.434 1.000 0.127
20 0.988 231.989 0.999 0.105
25 0.987 210.040 0.998 0.101
30 0.988 217.292 0.996 0.102
40 0.987 215.533 0.995 0.100

T 6: Reconstruction rate and running time of HapCUT and HMEC for ReHap samples.

Error rate HapCUT HMEC
Reconstruction rate Time (sec) Reconstruction rate Time (sec)

0.2 0.870 20.343 0.985 0.035
0.3 0.865 21.109 0.970 0.030
0.4 0.840 20.106 0.945 0.035
0.5 0.790 19.549 0.865 0.050
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T 7: Comparison of different haplotyping techniques using ReHap. Min Len = 3, Max Len = 7, coverage = 8. Highest reconstruction rate
for each error rate is shown in bold.

Error rate SpeedHap FastHare MLF 2-Distance MEC SHR HMEC HapCUT
0.2 1 0.91 1 1 0.65 1 0.9
0.3 0.935 0.7 0.945 0.61 0.685 0.965 0.82
0.4 0.605 0.78 0.78 0.68 0.55 0.535 0.81
0.5 0.535 0.48 0.485 0.505 0.526 0.525 0.58

T 8: Comparison of different haplotyping techniques using ReHap. Min Len = 10, Max Len = 30, coverage = 8. Highest reconstruction
rate for each error rate is shown in bold.

Error rate SpeedHap FastHare MLF 2-Distance MEC SHR HMEC HapCUT
0.2 0.98 0.975 0.985 0.985 0.84 0.985 0.87
0.3 0.985 0.985 0.97 0.97 0.74 0.97 0.865
0.4 0.895 0.79 0.885 0.885 0.675 0.87 0.84
0.5 0.74 0.47 0.76 0.76 0.51 0.705 0.79

Experimental results indicate that the reconstruction
rates of both HapCUT and HMEC are reasonably good.
For very low coverage, reconstruction rate of HapCUT is
slightly better than HMEC. However, as the coverage rate
increases, HMEC begins to outperform HapCUT. Notice
that HapCUT is only better than HMEC for very low (and
thus unrealistic) coverage values (5% and 10% coverage).
However, for higher coverage, HMEC consistently performs
better than HapCUT. Furthermore, HapCUT is signi�cantly
slower than HMEC. For an instance, with 35% coverage and
40% error rate, HapCUT takes 215.5 seconds where HMEC
takes only a fraction of a second (see Table 5). erefore,
although generally HapCUT provides reliable reconstruction
rate, on large dataset, it is an unrealistic choice due to its time
consuming operations. On the other hand, HMEC provides
the high accuracy with much less amount of time.

We also used some sample data from ReHap project [14,
15].We created the allelematrix from the ReHap errormatrix
and fed the matrix to both HMEC and HapCUT algorithms.
HMEC consistently produces higher reconstruction rate than
HapCUT (see Table 6). Also, the running time of HMEC is
clearly much better than HapCUT.

5.3. Comparison Using ReHap. We also compared HMEC
with some other well-known algorithms such as SpeedHap
[9], FastHare [10], MLF [11], 2 distance MEC [12], and
SHR-3 [13] using HapMap-based instance generator and
comparison framework [14, 15]. e results are shown in
Table 7 and Table 8 that suggest that no single method clearly
outperforms the others in all cases. However, reconstruction
rates achieved by HMEC are the highest or very close to the
highest. is bears a clear testimony to its suitability as a
practical tool for individual haplotyping.

6. Conclusion

In this paper, we present a heuristic algorithm (HMEC) based
on minimum error correction that computes highly accurate
haplotypes signi�cantly faster than the known algorithms
for haplotyping. e algorithm is inspired from the famous

Fiduccia and Mattheyses (FM) algorithm for bipartitioning
a hyper graph minimizing the cut size [8]. We report on an
extensive performance study evaluating our approach with
other available techniques using both real and simulated
datasets. Comprehensive performance study shows that our
algorithm outperforms (in most cases) or matches the accu-
racy of other well-known methods, but runs in a fraction of
the time needed for other techniques. High accuracy and very
fast running time make our technique suitable for genome-
wide scale data.

e accuracy of the algorithm can be improved by incor-
porating some prior knowledge. For example, small groups
of fragments that are declared to be in the same haplotype
can be identi�ed. Probabilistic methods like expectation
maximization (EM) also deserve some consideration over
such optimization problems. In the near future, we intend to
consider these issues to make further improvements.
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