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Abstract—Haplotype is a pattern of SNPs (Single Nucleotide
Polymorphism) on a single chromosome. Constructing a pair of
haplotypes from aligned and overlapping but intermixed and
erroneous fragments of the chromosomal sequences is a nontrivial
problem. Minimum error correction (MEC) model, which is
the mostly used model, minimizes the number of errors to be
corrected so that the pair of haplotypes can be constructed
through consensus of the fragments. However, this model is
effective only when the error rate of SNP fragments is low.
To overcome this problem, Zhang et al. proposed a new model
called Minimum Conflict Individual Haplotyping (MCIH) as an
extension to MEC [1]. This new model uses both SNP fragment
information and related genotype information for haplotype
reconstruction. MCIH has already been proven to be a potential
alternative in individual haplotyping. In this paper, we give a
heuristic algorithm for MCIH that searches through alternative
solutions using a gain measure and stops whenever no better
solution can be achieved. Experimental results on real data
show that our algorithm performs better than the best known
algorithm for MEC and the algorithm for MCIH proposed by
Zhang et al. [1].

I. INTRODUCTION

A single DNA molecule is a long chain of nucleotides (base
pairs). There are four such nucleotides which are represented
by the set of symbols {A,T,G,C}. Hence, a DNA can be
thought of as a string of symbols taken from this set. Every
diploid organism has a set of pairs of DNA molecules. Each
pair contains a paternal copy and a maternal copy of almost
identical sequence of nucleotides (considering no recombina-
tion). These copies differ only at a few positions with respect
to their total length. Most of the times the variations occur
at single nucleotide positions (on average 1 in every 600
base pairs) which are separated by a non-empty identical
sub-sequence. Such variation is called “Single Nucleotide
Polymorphism” and abbreviated as “SNP” [2], [3]. SNP is
believed to be the most frequent form to address genetic
differences [4], [5].

The nucleotide in a SNP site is called allele. A SNP site is
called bi-allelic if it can have only two nucleotides. It is called
multi-allelic if it can have more than two alleles. Almost all
SNPs have two different alleles which we denote by 0 (wild
type) and 1 (mutant type). From now on, we will consider the
simplest case where only bi-allelic SNPs occur in a specific
pair of DNA. Since the two copies of DNA molecules are

identical except at the SNP sites, we can describe the two
copies by two shorter sequences containing information only
for SNPs. These two sequences consisting of nucleotides at
SNP sites only are called the haplotypes. A genotype is the
conflation of two haplotypes on the homologous chromosome.
In a genotype, an SNP site is called homozygous if the
pair of alleles at the SNP site is made up of two identical
values, otherwise it is called heterozygous. The individual
haplotyping problem is to find two haplotypes from the set
of overlapping fragments of both the chromosomes where
fragments might contain errors and to which copy of the
chromosome a fragment belongs is not determined.

Haplotypes have more information content than individual
SNPs in disease association studies [6], but at the same time
it is substantially more difficult to determine haplotypes than
to determine genotypes or individual SNPs through experi-
ments [1]. For this reason, computational methods that can
reduce the cost of determining haplotypes become important
research area. The problem of haplotyping has been studied
extensively. There are generally two classes of computational
methods for determining haplotype namely haplotype infer-
ence and haplotype assembly or individual haplotyping. There
are several models for haplotype inference based on different
assumptions [5], [7]–[10]. On the other hand, haplotype assem-
bly is based on the data and methodology of shotgun sequence
assembly [11], [12]. There are several models for individual
haplotyping based on different error assumptions [11]–[14],
among which minimum error correction (MEC) model is the
most widely used. MEC is based on the assumption that
the inconsistencies of the data comes from realistic sequence
errors – that can be corrected. However, MEC is not much
effective when SNP fragments have a high error rate. Hence,
to improve the haplotyping quality, we need to either reduce
the errors in SNP fragments which requires the improvement
of the shotgun experiment, or add extra information to the
given SNP fragment set. Zhang et al. have proposed a new
model combining both SNP fragments and genotype informa-
tion, which they call minimum conflict individual haplotyping
(MCIH), since genotype data can be much more easily and
economically obtained [1]. They also presented a dynamic
programming based exact algorithm for MCIH and showed
that it performs better than MEC. Moreover, they proved that
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MCIH is NP-hard.
In this paper we present a heuristic algorithm for MCIH.

Our heuristic algorithm for MEC, which we call the HMEC,
has the highest reconstruction rate compared to the other
approaches of MEC [15]. Although HMEC can reconstruct the
haplotypes with very high reconstruction rate (almost 100%);
in some cases, with very high error rates and very low coverage
value (high “hole” rate), its reconstruction rate falls down.
In this paper we customize our HMEC to incorporate the
genotype data that leads to a new heuristic algorithm for MCIH
which we call HMCIH. Experimental results confirms that
HMCIH performs very well in high error rate and it performs
better than HMEC and the feed-forward neural network (FNN)
based algorithm proposed by Zhang et al.

II. PRELIMINARIES

In this section we give some definitions and preliminary
ideas.

Let S be the set of k bi-allelic SNP sites over which
the haplotypes will be constructed. Let F be the set of m
fragments produced from two copies of the chromosome.
Each fragment contains information of nonzero number of
SNPs in S. Because the SNPs are bi-allelic, let the two
possible alleles for each SNP site be 0 and 1 where they can
be any two elements of the set {A, T,G,C}. Since all the
nucleotides are the same at the sites other than SNP sites,
we can remove these extraneous sites from all the fragments
and consider the fragments as sequences of SNP sites only.
Thus each fragment f ∈ F is a string of symbols {0, 1,−} of
length k where ‘−’ denotes an undetermined SNP named as
hole. All the fragments can be arranged in an m × k matrix
M = {Mij}, i = 1, . . . ,m, j = 1, . . . k, where row i is a
fragment of F and column j is a SNP of S. This matrix is
called SNP matrix.

TABLE I
A SNP MATRIX.

- - - -1101- - - - - - - - - - - -
- - - - -0001110101- - - - -
11010010011- - - - - - - - -
- - -10100- - -010- - - - - -
- - - - - - - - -10110101011
010111- - - - - - - - -01011

The consecutive sequence of ‘−’s that lie between two non-
hole symbols is called a gap. A gapless SNP matrix is the one
that has no gap in any of the fragments. In Table I, the first,
second and third rows have no gaps while each of the fourth
and sixth rows has one gap.

A SNP matrix M =< M1,M2, . . . ,Mm > can be
viewed as an ordered set of m fragments where a fragment
Mi =< Mi1,Mi2, . . . ,Mik > is an ordered set of k alleles. A
fragment Mi is called to cover the jth SNP if Mij ∈ {0, 1}
and called to skip the jth SNP if Mij = −. Let Ms and
Mt be two fragments. The distance between two fragments,
D(Ms,Mt), is defined as the number of SNPs that are covered
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Fig. 1. SNP matrix and its partition.

by both of the fragments and have different alleles. Hence,

D(Ms,Mt) =

k∑
j=1

d(Msj ,Mtj) (1)

where d(x, y) is defined as

d(x, y) =

{
1 if x 6= − and y 6= − and x 6= y;
0 otherwise. (2)

In Table. I, the distance between second and third fragment
is two, as they differ in the seventh and ninth SNP sites
(columns).

Two fragments Ms and Mt are said to be conflicting
if D(Ms,Mt) > 0, otherwise they are compatible. Let
P (C1, C2) be a partition of M , where C1 and C2 are
two sets of fragments taken from M so that C1

⋃
C2 = M

and C1

⋂
C2 = φ [14]. In Fig. 1(b), an arbitrary partition,

corresponding to the SNP matrix of Fig. 1(a), is shown. A
SNP matrix M is an error-free matrix if and only if there
exists a partition P (C1, C2) of M such that for any two
fragments x, y ∈ Ci, i ∈ {1, 2}, x and y are non-conflicting,
i.e., D(x, y) = 0. Such a partition is called an error-free
partition.The partition in the Fig. 1(b) is not error free since
D(M1,M2) > 0 in C1 and D(M5,M6) > 0 in C2 .
The method of haplotype construction from its corresponding
fragment class will be described in the next section.

A genotype g is represented as g = (g1, g2, · · · , gn), where
gj = 0 if the jth SNP site is wild type homozygous; when it is
mutant type homozygous, gj = 1; and gj = 2 if it is heterozy-
gous. We call a pair of haplotypes H1 = (H11, H12, · · · , H1n)
and H2 = (H21, H22, · · · , H2n) compatible with a genotype
g if for each each SNP site j where gj 6= 2, H1j = H2j = gj ;
and for each SNP site j where gj = 2, H1j = 0, H2j = 1 or
H1j = 1, H2j = 0 [14].

Now we take a focus to the general minimum error correc-
tion problem. If a matrix M is not error-free, there will be
no error-free partition P . For such M there will be at least
one conflicting pair of fragments in each of the classes of
all possible partitions. Therefore it is impossible to construct
a haplotype that is non-conflicting with all the fragments in
its defining class of fragments. If we are given a partition
P (C1, C2) and two haplotypes H1 and H2 constructed from
P then the number of errors E(P ) that must be corrected can
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be readily calculated by the following formula,

E(P ) =

2∑
i=1

∑
f∈Ci

D(f,Hi) (3)

The MEC problem asks to find a partition P that minimizes
the error function E(P ) over all such partitions of a SNP
matrix M . Minimum conflict individual haplotyping (MCIH)
incorporates the genotype information into MEC, and can
be defined as: Given a set of SNP fragments (SNP matrix
M ) from an individual’s DNA and the related genotype
g, reconstruct a pair of haplotypes compatible with g and
involving a minimum number of conflicts with the given SNP
fragments [1].

III. A HEURISTIC ALGORITHM

In this section we present our heuristic algorithm for MCIH
which we call HMCIH. Here we incorporate the genotype
information into our proposed heuristic algorithm for MEC
(HMEC) in [15]. HMCIH works in two steps. First, it uses
the HMEC to reconstruct a pair of haplotypes from a set of
SNP fragments by dividing the given SNP fragments into two
disjoint sets of pairwise compatible fragments, with each set
determining a haplotype. HMEC have already been proven to
be the best algorithm in this purpose. We do not incorporate (in
gain calcualation) genotype information during this partition-
ing phase relying on the extra ordinary high reconstruction rate
of HMEC and also considering the chance of getting trapped
at local minima; rather we use the genotype information to
refine the pair of haplotypes, generated by HMEC, in the next
step which we call the refinement step. We now describe the
refinement step after giving a brief overview of HMEC. The
details of HMEC can be found in [15].

A. HMEC

Construction of a haplotype from an erroneous class C re-
quires correction of SNP values, i.e., alleles, in the fragments.
Since, we want to correct minimum number of errors, we have
to construct a haplotype which is minimum conflicting with
the fellow fragments of its defining class. Therefore, for each
SNP site, the haplotype should take the allele that is present
in majority of the fragments. Let N0

j (C) be the number of
fragments of a collection C that have 0 in jth SNP. Similarly,
N1

j (C) defines the number of 1s [14]. Therefore, to minimize
the number of errors E(P ) for a specific partition P , the
haplotype should be constructed according to the following
methodology

Hij =


1 if N1

j (Ci) > N0
j (Ci);

0 if N0
j (Ci) ≥ N1

j (Ci) and

N0
j (Ci) 6= 0;

− if N1
j (Ci) = N0

j (Ci) = 0.

(4)

where i ∈ {1, 2} and j = 1, 2, . . . , k. In Fig. 1(c) the two
haplotypes H1 and H2, associated with the partition P in
Fig. 1(b), are constructed by this method.

To find the best partition we will use a heuristic search.
This algorithm starts with a current partition Pc = P (M,φ)
and iteratively searches a better partition. In each iteration
the algorithm performs a sequence of transfer of fragments
from their present collection to the other one so that the
partition becomes less erroneous. A fragment’s transfer of
collection can both increase or decrease the error function
E(P ). Let the partition before transferring a fragment f be
Pp and the partition resulted is Pn. We define the gain of
the transfer as Gain(f) = E(Pp) − E(Pn). Let F =< fi >
, i = {1, 2, . . . ,m} be an ordering of all the fragments in
a partition P in such a way that fragment fi will precede
fragment fj if all the fragments before fi in F have already
been transferred to form an intermediate partition Pi and
Gain(fi) ≥ Gain(fj) over Pi. Hence, P1 = Pc at the start
of each iteration. We also define the cumulative gain of a
fragment ordering F upto nth fragment as CGain(F, n) =∑n

i=1Gain(fi). Here Gain(fi) = E(Pi) − E(Pi+1). The
maximum cumulative gain, MCGain(F ) is defined as

MCGain(F ) = max
1 ≤ i ≤ m CGain(F, i).

In each iteration the algorithm finds the current ordering
Fc of Pc and transfers only those fragments of Fc that can
achieve the MCGain(Fc) and the fragment that is the last to
be transferred is referred as fmax. Thus the algorithm moves
from one partition to another reducing the error function by an
amount of MCGain(Fc). The algorithm continues as long as
MCGain(Fc) > 0 and stops whenever MCGain(Fc) ≤ 0.

B. Refinement Step

HMEC can reconstruct haplotypes with very high recon-
struction rate. For SNP fragments with low or medium error
rate the reconstruction rate is near about 100%. However, its
reconstruction rate slightly falls down for very high error rate
and low coverage value. We investigate that there are some
potential opportunities to improve the reconstruction rate with
the help of genotype information. Only in some few cases,
genotype may also fail to correct errors.

We now describe our refinement strategies. Let M and g
be a given SNP matrix and the relative genotype respectively,
and H1 and H2 be the original pair of haplotypes. Let HMEC
divides M into two disjoint sets of fragments C1 and C2 that
determine H ′

1 and H ′
2 respectively, i.e, H ′

1 and H ′
2 are the

reconstructed haplotypes. The refinement procedure for jth
SNP site, using the genotype information, is as follows. When
gj = i, i 6= 2 ; we set H ′

1j = H ′
2j = i to make H ′

1 and H ′
2

compatible with g. We now consider the case gj = 2. Let for
any variable x ∈ {m,n}, xT is defined as follows.

xT =

{
m if x = n;
n if x = m. (5)

Let nk,j = max
l∈{0,1}

N l
j(Ck); k ∈ {1, 2}. First, we calculate n1,j

and n2,j . Then we need to consider the following cases.
Case 1: n1,j = n2,j = 0.
This is the case where both H ′

1 and H ′
1 contain a hole at the
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jth SNP site. Therefore, we do not have enough information
to refine it.
Case 2: n1,j > n2,j .
In this case, we assign H ′

2j = pT , where p = H ′
1j .

Case 3: n2,j > n1,j .
In this case, we assign H ′

1j = qT , where q = H ′
2j .

Case 4: n1,j = n2,j .
Let p = H ′

1j and q = H ′
2j . We now assign H ′

2j = pT if

NpT

j (C1) < NqT

j (C2); otherwise we assign H ′
1j = qT .

One can observe that the aforementioned refinement strategy
for gj = 2 will not always refine the jth SNP site of H1 and
H2 correctly, but we can expect a high probability of correct
refinement in this way. Experimental results also confirm this.
For an m× k SNP matrix, time complexity of each iteration
of HMEC is O(m3k) which can be reduced to O(m2k) by
using special data structure [15]. Refinement step is executed
only once and it takes O(m) time.

IV. EXPERIMENTAL RESULTS

In this section, we use real biological data as well as
simulated data to demonstrate the performance of our al-
gorithm. We performed the simulation using the data from
angiotensin-converting enzyme (ACE) [16] and public Daly
set [17]. We compared the performance of our algorithm with
that of HMEC and the feed-forward neural network (FNN)
based algorithm of MCIH proposed by Zhang et al. [1]. The
simulation was conducted on a computer with 1.80 GHz Core
2 Duo processor. We used Microsoft Visual C++ compiler 6
for implementation.

We now proceed to our testing methodologies. We first
sample the original haplotype pair into many fragments with
certain coverage rate and error rate. Each fragment works as
distinct sample of the same specimen. Here coverage rate in-
dicates how many columns of SNP matrix have been sampled
out. The remaining sites are gaps/holes. We then introduce
some specific amount of error into these samples. The number
of fragments, coverage and error rate are user given input
for our simulated sequencing technique. The simulation was
controlled in several ways. We varied the error rate while
number of fragments and coverage rate were kept constant. We
also performed this procedure for different coverage values.

A. Simulation on angiotensin-converting enzyme (ACE)

Angiotensin-converting enzyme has a key function in the
renin-angiotensin system, and hence many association stud-
ies have been performed with DCP1 (encode angiotensin-
converting anzyme) [1]. Rieder et al. completed the genomic
sequencing of the DCP1 gene from 11 individuals and reported
78 SNP sites in 22 choromosomes [16].

We take six pairs of haplotypes to perform the simulation.
We generate 50 fragments from each of these haplotype pairs
with varying coverage and error rates. We perform the simu-
lation for three different coverage rates (25%, 50% and 75%).
For each of these coverage rates, we perform our simulation
for different error rates: 5%, 10%, 15%, 20%, 25%, 30%, 40%,
50% and 60%. Figure 2 demonstrates the results of HMEC
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Fig. 2. The comparison of HMCIH and HMEC on ACE. From top to bottom,
coverage = 75%, coverage = 50%, coverage = 25%.

and HMCIH averaged on six individuals. The reconstruction
rate achieved by our algorithm for most instances is 100%
or around 98% ∼ 99%. Only for a few cases with very high
error rate (50%, 60%) and very low coverage rate (25%), the
reconstruction rate falls below 95%. The comparison clearly
confirms the superiority of HMCIH over HMEC. Moreover,
HMCIH works much better than the FNN based algorithm
for MCIH. When the reconstruction rate achieved by FNN
falls down to around 90% with 25% coverage and 25% error
rate [1], HMCIH achieves 97% reconstruction rate with that
parameter settings. Even with 60% error and 25% coverage,
reconstruction rate of HMCIH does not fall below 90%.
Moreover, our algorithm solves each of these instances in no
more than 0.015 sec.

B. Simulation on data from chromosome 5q31

In this section we demonstrate our simulation result con-
ducted on the data from public Daly set. Daly et al. reported a
high-resolution analysis of a haplotype structure across 500kb
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Fig. 3. The comparison of HMCIH and HMEC on Daly set. From top to
bottom, coverage = 75%, coverage = 50%, coverage = 25%.

on chromosome 5q31 using 103 SNPs in a European derived
population which consists of 129 trios [1], [17].

Here we follow the same simulation procedure that we
followed for angiotensin-converting enzyme. Figure 3 demon-
strates the result. The figure again shows that HMCIH is much
better than the HMEC and the FNN algorithm. For some
instances with high error and hole rate, FNN takes several
minutes to stop [1], whereas HMCIH does not take more than
1 sec.

V. CONCLUSION

In this paper, we gave a heuristic algorithm for minimum
conflict individual haplotyping (MCIH). MCIH is an exten-
sion of MEC, proposed by Zhang et al., that can solve the
haplotyping problem with higher reconstruction rate than the
MEC with the cost of additive genotype information [1].
Considering the facts that genotypes can be achieved easily
and economically, and MCIH performs much better than MEC
(specially in the case of high error rate), it is fairly effective to

use MCIH as an alternate way of individual haplotyping at the
cost of genotype information. Since MCIH is computationally
intractable, it may not have any efficient exact algorithm.
Hence, we present a heuristic algorithm for MCIH (HMCIH)
that performs fairly well. Since our previous heuristic algo-
rithm for MEC (HMEC) [15] performs very well, we rely on
that heuristic and customize it for MCIH incorporating the
additive genotype information. Experimental results confirms
that HMCIH is much better than HMEC and the FNN based
algorithm proposed by Zhang et al. The extra ordinarily fast
converging time, deterministic nature, and of course the high
reconstruction rate prove the potential of HMCIH to be a
practical tool for individual haplotyping.
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