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Standard Error and Statistical Significance

Standard Error: For each model condition of the simulated dataset, we calculate the standard error of RF
rates, given by S/

√
(N), where S is the standard deviation and N is the number of datapoints (which is 20

in our experiments). Table S1 and Table S2 show the standard errors of RF rates of QFM and QMC over
the 20 replicates of data under various model conditions.

Statistical Significance: We have used Wilcoxon signed-rank test with α = 0.05 to test the statistical
significance of the differences between the RF rates of QFM and QMC. The results are shown in Table S3.

Table S1. Standard error of QFM and QMC under various model conditions.

n q Standard error
c = 70% c = 80% c = 90% c = 95%

QFM QMC QFM QMC QFM QMC QFM QMC
25 125 0.032 0.020 0.026 0.034 0.029 0.029 0.029 0.039
25 625 0.025 0.026 0.019 0.021 0.011 0.017 0.008 0.012
25 8208 0 0.002 0 0.002 0 0 0 0
50 354 0.007 0.009 0.013 0.013 0.023 0.014 0.021 0.016
50 2500 0.019 0.021 0.014 0.016 0.013 0.014 0.011 0.009
50 57164 0.003 0.003 0 0 0 0 0 0
100 1000 0.003 0.003 0.007 0.007 0.010 0.007 0.008 0.007
100 10000 0.012 0.009 0.011 0.010 0.009 0.013 0.008 0.010
100 398108 0.002 0.010 0.001 0.004 0.001 0 0 0.001
200 2829 0.001 0.001 0.004 0.005 0.005 0.004 0.004 0.004
200 40000 0.009 0.009 0.008 0.009 0.009 0.008 0.010 0.007
300 5197 0.001 0.001 0.002 0.002 0.004 0.003 0.005 0.003
300 90000 0.007 0.006 0.007 0.006 0.007 0.005 0.007 0.007
400 8000 0.002 0.001 0.003 0.002 0.003 0.001 0.003 0.003
400 160000 0.004 0.004 0.006 0.006 0.006 0.006 0.006 0.005
500 11181 0.001 0.001 0.002 0.002 0.004 0.002 0.003 0.002
500 250000 0.003 0.004 0.004 0.005 0.005 0.005 0.006 0.005

We show the standard errors of RF rates of QFM and QMC over the 20 replicates of data
under various model conditions. We varied the number of taxa (n), the number of quartets (q), and
the percentage of consistent quartets (c).
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Table S2. Standard error of QFM and QMC under the noise-free model conditions.

n q Standard error
c = 100%

QFM QMC
25 125 0.027 0.022
25 625 0.007 0.008
25 8208 0 0
50 354 0.021 0.017
50 2500 0.007 0.010
50 57164 0 0
100 1000 0.013 0.007
100 10000 0.011 0.010
100 398108 0 0
200 2829 0.006 0.004
200 40000 0.008 0.009
300 5197 0.005 0.003
300 90000 0.007 0.007
400 8000 0.004 0.002
400 160000 0.006 0.005
500 11181 0.003 0.002
500 250000 0.003 0.004

Standard error of RF rates of QFM and QMC over the 20 replicates of data under the noise-
free model conditions (c = 100%). We varied the number of taxa (n) and the number of quartets (q).
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Table S3. Statistical significance of the differences between QFM and QMC.

n q p-values
c = 70% c = 80% c = 90% c = 95% c = 100%

25 125 0.389 0.139 0.426 0.288 0.300
25 625 0.050 0.052 0.013 0.090 0.156
25 8208 0.500 0.500 0.500 0.500 0.500
50 354 0.170 0.175 0.470 0.301 0.354
50 2500 0.022 0.0005 0.185 0.058 0.441
50 57164 0.250 0.500 0.500 0.500 0.500
100 1000 0.060 0.068 0.426 0.024 0.068
100 10000 0.001 0.015 0.063 0.040 0.239
100 398108 0.383 0.500 0.500 0.500 0.500
200 2829 0.094 0.078 0.001 0.007 0.0002
200 40000 0.018 0.015 0.003 0.011 0.500
300 5197 0.222 0.010 0.00007 0.00008 0.001
300 90000 0.003 0.006 0.002 0.109 0.148
400 8000 0.036 0.00004 0.00005 0.00007 0.00005
400 160000 0.001 0.0002 0.020 0.084 0.470
500 11181 0.210 0.001 0.00006 0.00007 0.00004
500 250000 0.0003 0.0003 0.002 0.0004 0.001

We calculated the p-values using the Wilcoxon signed-rank test (with α = 0.05) for all the
model conditions. Here n is the number of taxa, q is the number of quartets and c is the percentage of
consistent quartets. The p-values, which indicate the statistically significant differences (i.e., p < 0.05), are
shown in bold face. The differences are statistically significant in 38 cases (in most of these cases, p << 0.05),
and QFM is found to be better than QMC on all of these 38 model conditions. The differences between QFM
and QMC on the 7 cases, where QMC was found to be better than QFM, are not statistically significant.

3



Table S4. Algorithm MFM(P , Q)

(Pa0 , Pb0) ← INITIAL PARTITION(P , Q)
repeat always

FREE LOCKS(P ) //set the status of each taxon free
CLEAR LOG() //maintain a log file, initially blank
i← 1
while there is a free taxon do
begin

find a free taxon ti so that Gain(ti, (Pai−1 , Pbi−1)) is maximum
break tie in case of multiple candidates
transfer ti to the other partition
update (Pai−1 , Pbi−1) to (Pai , Pbi)
LOCK (ti) //set the status of taxon ti locked
LOG RECORD (ti, Gain(ti, (Pai−1 , Pbi−1))) //write on log file
increment i

end do
check the log file and find MCGain(t1, t2, . . . , tn) and tm //cumulative gain is maximum at the m-th

transfer
if MCGain(t1, t2, . . . , tn) > 0
begin

set new (Pa0 , Pb0) by rolling back the transfers that occurred
after the transfer of tm
continue with the the loop

end if
else
begin

terminate the algorithm and output current partition
end else

end repeat

Modified FM (MFM) Bipartition Algorithm.
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Time Complexity of MFM Bipartition Algorithm

QFM is a divide and conquer approach. The time required at a conquer step is negligible compared to the
time required at a divide step. The key contributing factor in the time required by a divide step is the time
taken to make a bipartition of the set of taxa. Now we derive the theoretical running time of our bipartition
algorithm MFM (P , Q), where P is a set of taxa and Q is a set of quartets over P . Let, n and m be the
cardinality of taxa set P and the quartet set Q respectively. We first derive the running time for the Initial
Partition.

Initial Partition: First, we count the frequency of the distinct quartets in Q and sort Q by frequency
count. The counting and the sorting step requires O(m2) running time. Then, we check each quartet q ∈ Q
and insert each of its 4 taxa either in Pa or in Pb by checking the existing elements of Pa and Pb. The length
of Pa or Pb is bounded by O(n), so the time required to insert taxa of each quartet is O(n). For m quartets,
the required time is O(nm). Overall, the total time complexity of initial bipartition is O(m2) + O(nm).

Next, we explain the time required for the remaining part of MFM, which is accomplished in several
iterations. Let, the maximum cumulative gain becomes less or equal to 0 in k iterations. The time complexity
per iteration is described below.

• Gain Measure of a Partition: The gain of a new partition is the difference between its score and the
score of initial partition. The difference is measured in O(1) time. We need to find out the time
required to calculate the partition score of a partition (Pa, Pb). To calculate score, each q ∈ Q is
checked against the partition (Pa, Pb), which takes O(n) time since the length of Pa or Pb is bounded
by O(n). Hence to check m quartets, hence to calculate partition score, O(nm) time is required.

• SELECT FREE TAXON(P ): One taxon is selected among the free taxa. For each free taxon Gain
is measured and the taxa with maximum gain is selected. There are n free taxa initially, so this step
requires n×O(nm) = O(n2m) time. The selected taxon is made locked.

• There are n free taxon initially. Each taxon is selected and locked one after another. So the total time
complexity to lock all the taxa = n×O(n2m) = O(n3m).

• Each locked taxon has a gain associated with it. When all taxa are locked, cumulative gain and
maximum cumulative gain are calculated. These operations take O(n) time.

Overall the running time for one iteration is O(n3m) + O(n) = O(n3m). For k iterations, the time complexity
becomes O(n3mk). Taking the time required by the initial partition into account, a divide step requires
O(n3mk) + O(m2) time.
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