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INTRODUCTION: Reconstructing species 

trees for rapid radiations, as in the early 

diversification of birds, is complicated by 

biological processes such as incomplete 

lineage sorting (ILS) 

that can cause differ-

ent parts of the ge-

nome to have different 

evolutionary histories. 

Statistical methods, 

based on the multispe-

cies coalescent model and that combine 

gene trees, can be highly accurate even 

in the presence of massive ILS; however, 

these methods can produce species trees 

that are topologically far from the species 

tree when estimated gene trees have error. 

We have developed a statistical binning 

technique to address gene tree estimation 

error and have explored its use in genome-

scale species tree estimation with MP-EST, 

a popular coalescent-based species tree 

estimation method.

Statistical binning enables an 
accurate coalescent-based estimation 
of the avian tree
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 RATIONALE: In statistical binning, phy-

logenetic trees on different genes are es-

timated and then placed into bins, so that 

the differences between trees in the same 

bin can be explained by estimation error 

(see the figure). A new tree is then esti-

mated for each bin by applying maximum 

likelihood to a concatenated alignment of 

the multiple sequence alignments of its 

genes, and a species tree is estimated us-

ing a coalescent-based species tree method 

from these supergene trees.

RESULTS: Under realistic conditions in 

our simulation study, statistical binning 

reduced the topological error of species 

trees estimated using MP-EST and enabled 

a coalescent-based analysis that was more 

accurate than concatenation even when 

gene tree estimation error was relatively 

high. Statistical binning also reduced the 

error in gene tree topology and species 

tree branch length estimation, especially 

when the phylogenetic signal in gene se-

quence alignments was low. Species trees 

estimated using MP-EST with statisti-

cal binning on four biological data sets 

showed increased concordance with the 

biological literature. When MP-EST was 

used to analyze 14,446 gene trees in the 

avian phylogenomics project, it produced 

a species tree that was discordant with the 

concatenation analysis and conflicted with 

prior literature. However, the statistical 

binning analysis produced a tree that was 

highly congruent with the concatenation 

analysis and was consistent with the prior 

scientific literature.

CONCLUSIONS: Statistical binning re-

duces the error in species tree topology 

and branch length estimation because 

it reduces gene tree estimation error. 

These improvements are greatest when 

gene trees have reduced bootstrap sup-

port, which was the case for the avian 

phylogenomics project. Because using 

unbinned gene trees can result in over-

estimation of ILS, statistical binning may 

be helpful in providing more accurate 

estimations of ILS levels in biological 

data sets. Thus, statistical binning enables 

highly accurate species tree estimations, 

even on genome-scale data sets. ■ 

The list of author affiliations is available in the full article online.

*Corresponding author. E-mail: warnow@illinois.edu
Cite this article as S. Mirarab et al., Science 346, 1250463 
(2014). DOI: 10.1126/science.1250463

Read the full article 

at http://dx.doi

.org/10.1126/

science.1250463

ON OUR WEB SITE

Published by AAAS

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

 o
n 

Ja
nu

ar
y 

26
, 2

01
5

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/
http://www.sciencemag.org/


RESEARCH ARTICLE

Statistical binning enables an
accurate coalescent-based estimation
of the avian tree
Siavash Mirarab,1 Md. Shamsuzzoha Bayzid,1 Bastien Boussau,2 Tandy Warnow1,3*

Gene tree incongruence arising from incomplete lineage sorting (ILS) can reduce the
accuracy of concatenation-based estimations of species trees. Although coalescent-based
species tree estimation methods can have good accuracy in the presence of ILS, they
are sensitive to gene tree estimation error. We propose a pipeline that uses bootstrapping
to evaluate whether two genes are likely to have the same tree, then it groups genes into
sets using a graph-theoretic optimization and estimates a tree on each subset using
concatenation, and finally produces an estimated species tree from these trees using the
preferred coalescent-based method. Statistical binning improves the accuracy of MP-EST,
a popular coalescent-based method, and we use it to produce the first genome-scale
coalescent-based avian tree of life.

S
pecies trees provide a basis for under-
standing how life evolved on earth, as well
as having applications to comparative ge-
nomics, orthology detection, protein func-
tion inference, and biodiversity analysis.

Estimations of species trees are typically built
with multiple loci (sometimes complete genes—
but not always), in some cases, from throughout
the genome. One advantage of such a phyloge-
nomic approach is that it enables more data to
be used in tree estimation (1). However, there is
increasing evidence that loci can have conflict-
ing evolutionary histories (so that their phylo-
genetic trees are topologically different) because
of many biological causes, including incomplete
lineage sorting (ILS) (2, 3), a process that is es-
pecially common in rapid radiations, character-
ized by a succession of short branches in the
phylogenetic tree, such as is believed to have
occurred in the avian and mammalian evolu-
tionary lineages (4–9). However, the standard
phylogenetic estimation technique of concate-
nation, which concatenates alignments for in-
dividual loci into a combined data set called a
supermatrix and then estimates the species tree
from the supermatrix, can return incorrect species
trees with high confidence in the presence of sub-
stantial ILS (10–13).
For this reason, many methods have been de-

veloped to estimate species trees that can be ac-
curate even with high levels of ILS (4, 8, 12–19).
For example, coestimation methods produce es-
timated gene trees and species trees directly from
sequence alignments (14, 15, 18), and summary
methods operate by combining estimated gene
trees into a species tree. (Not all the loci in a

phylogenomic analysis may be complete genes,
e.g., some may contain only the exons or only
the introns of some gene, and some may not be
based on genes at all. However, to be consistent
with other literature on the subject (2, 10), we
refer to phylogenetic trees on genomic loci as
gene trees.) Some of these summary methods
are created on the basis of the multispecies co-
alescent model (20) and are statistically consist-
ent under that model (12, 13), which means
they will reconstruct the true species tree with
high probability given a sufficiently large num-
ber of estimated gene trees that are error-free
(12, 13, 17, 18). A new type of coalescent-based
method estimates the species tree directly from
unlinked markers without also estimating gene
trees (21–23).
However, the performance of coalescent-based

methods has been mixed. Coestimation methods
can have excellent accuracy but are too compu-
tationally intensive to use on data sets with hun-
dreds of genes (24). The methods that estimate
species trees directly from the sequence data
without also estimating gene trees are not as
computationally intensive as the coestimation
methods but are much less well understood be-
cause they have only recently been developed.
Furthermore, some [like SNAPP (21)] can only be
used with biallelic markers and so are not suit-
able for estimating species trees for large data
sets with deep divergences where biallelic mark-
ers are rare. Summary methods are by far the
most frequently used method for species tree
estimation and have produced good results on
some biological data sets (14, 15); however, for
other data sets, the summary methods have not
been able to produce highly supported trees (25),
even with a large quantity of data (26). Simula-
tion studies show that species trees estimated
with summarymethods can be less accurate than
species trees estimated with concatenation, even
in the presence of substantial ILS (11, 27, 28). A
main reason for this disparity in performance is

poor phylogenetic signal (e.g., because of short
sequence lengths) in individual genes, which is a
potential problem for coalescent-based summary
methods (28, 29). Moreover, many realistic bi-
ological conditions (including short branches in
gene trees) make completely accurate gene tree
estimation from limited sequence data highly
unlikely (30).
Phylogenomic analyses can utilize very large

numbers of genomic loci to estimate the species
tree, but genome-scale data sets can contain loci
that have reduced phylogenetic signal so that
their estimated gene trees have reduced boot-
strap support (BS) (31). Although it is not known
how summary methods are affected when only
some of the loci have low signal, coalescent-
based summary methods have reduced accuracy
on data sets where all the gene sequence align-
ments are short (28).
This challenge confronted the avian phyloge-

nomics project (31), where a species tree esti-
matedwith a concatenatedmaximum-likelihood
analysis on 14,446 loci had a succession of short
branches suggestive of a radiation, and the tree
also conflicted with estimated gene trees. Fur-
thermore, most loci had low phylogenetic signal,
which resulted in average BS of only 32% for
the bifurcating maximum-likelihood trees esti-
mated on these loci (fig. S1). Although much of
the distance between estimated gene trees and
the estimated species tree was related to the low
support branches, even after collapsing low sup-
port branches, there was still substantial conflict
among the gene trees (fig. S15 and supplementary
text), suggestive of ILS. Thus, not only is there gene
tree conflict (reducing the accuracy of concate-
nation) but the gene trees were generally poorly
estimated (reducing the accuracy of summary
methods).
Constructing phylogenies from genes with

low phylogenetic signal is challenging, even if
ILS is not an issue, and several approaches for
selecting loci for use within a concatenated
analysis have been suggested (32). However,
restricting loci is problematic for statistically
consistent coalescent-based summary methods,
because the conditions under which they are
guaranteed to be accurate (with high proba-
bility) require a large enough random sample of
true gene trees; removing loci can violate this
condition and potentially bias the analysis.

Statistical binning technique

A phylogenomic pipeline that uses a coalescent-
based summary method begins with sequence
alignments on different loci, estimates gene
trees on each locus, and then combines the
estimated gene trees into an estimated species
tree using the summarymethod. The statistical
binning step modifies the pipeline by using a
binning technique to produce a different set of
estimated gene trees that can be used with the
summary method. We call the use of binning
with a given summary method the binned ver-
sion of the summary method.
How the statistical binning pipeline operates,

given an input set of loci with their estimated
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sequence alignments and trees is shown in Fig. 1.
We use BS values on branches of the estimated
gene trees to partition the set of loci into bins
of roughly equal sizes, so that each bin consists
of a set of loci where differences in the esti-
mated gene trees can be explained by gene tree
estimation error. We concatenate the alignments
of loci in each bin into a large alignment (called
a supergene alignment) and compute trees on
each supergene alignment using maximum like-
lihood (33); this produces a set of trees (called
supergene trees), with one supergene tree for
each bin. We then construct a species tree from
the set of supergene trees using the desired sum-
mary method. Thus, the difference between the
unbinned and binned versions of a summary
method is the set of trees it uses to compute the
species tree: The unbinned summary method
uses the original set of gene trees, and the binned
summarymethod uses the set of supergene trees.

Evaluation

We used biological and simulated data sets
(34) to evaluate species trees estimated by using
binned and unbinned summary methods, as
well as concatenation usingmaximum likelihood
under the GTR+G model, computed by random-
ized accelerated maximum likelihood (RAxML)
(33). Three summary methods—the greedy con-
sensus, matrix representation with parsimony
(MRP) (35), and maximum pseudo-likelihood es-
timation of species trees (MP-EST) (13)—were
applied to simulated avian andmammalian data
sets by using the site-onlymultilocus bootstrapping
procedure (34) [see (36) for a discussion of more
elaborate approaches for bootstrapping multi-
locus data sets]. We chose MP-EST because it is

statistically consistent under the multispecies
coalescentmodel, has been used in several studies
(6, 37–39), and had better accuracy than other
summary methods in some studies (13). How-
ever, the greedy consensus is inconsistent under
the multispecies coalescent (40), and MRP and
concatenation may also be inconsistent (11).
We generated simulated data sets (34) from

two model species trees: one based on the avian
phylogenomics project data set with 48 species
and 14,446 loci (31), and one based on a mam-
malian data set with 37 species and 447 loci
studied in (6). The default model conditions cen-
ter on the average gene tree BS and ILS levels
of these biological data sets, and we varied the
model parameters to produce lower and higher
ILS levels and estimated gene trees with varying
BS to understand the impact of binning under
a wide range of conditions. Each model species
tree was computed by running MP-EST on the
biological data, and we modified the branch
lengths on the model species trees to produce
other model conditions with different amounts
of ILS (the 2× condition has doubled branch
lengths and so reduces ILS, and the 0.5× con-
dition has halved branch lengths and so in-
creases ILS). We simulated gene trees within
the model species trees (table S1) on the basis
of the multispecies coalescent model (20). We
evolved sequences of different lengths down
the gene trees and used RAxML (33) with 200
bootstrap replicates to estimate gene trees with
branch support on these sequence alignments.
The avian biological gene trees have very

low average BS. Of the three types of genomic
markers—exons, introns, and UCEs (ultracon-
served markers) analyzed—the exons have the

least signal (average BS 24%), the introns have
the most (average BS 48%), and the UCEs are
intermediate in support (average BS 39%). The
longest introns (with at least 10,000 bp) have
the highest average BS (59%) but represent a
very small fraction of the total set of gene trees
examined (only 638 of 14,446).
We modeled conditions that resembled the

avian exons-only, UCEs-only, introns-only, and
long introns–only data sets (fig. S1), with respect
to their average BS values, and refer to these
different model conditions by the partition type
(below). The simulated mammalian data sets
exhibit support levels of 63 and 79%, bracket-
ing the 71% average BS values in the biological
data. We varied the number of genes from 200
to 2000 for the avian data set and from 200 to
800 for the mammalian data set. Finally, we
createdmixed-model conditions, onewith 14,350
genes for the avian simulation experiment and
the other with 400 genes for the mammalian
simulation experiment, to closely approximate
the biological data sets in terms of the number of
loci and average BS. Overall, the avian simulated
data sets have higher levels of ILS and lower BS
values than the mammalian data sets and so
present a more challenging condition.
For the simulated data sets, we recorded the

true species tree and true gene trees generated
during the simulation process, which allows us
to exactly quantify the topological error in the
estimated tree (34). We computed the missing
branch rate (also called the false-negative rate),
which is the proportion of branches in the true
tree that are missing from the estimated tree,
as well as the false-positive rate, which is the
proportion of branches in the estimated tree that
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Fig. 1. Binning procedure. In traditional pipelines, gene trees are estimated
from input sequence alignments and then combined into a species tree using a
coalescent-based summary method. Statistical binning takes estimated gene
trees and builds an incompatibility graph in which each node represents an
estimated gene tree and each edge represents a detected incompatibility
between two estimated gene trees at the specified statistical support threshold
or higher.We use a heuristic we developed to color the nodes of the graph so

that no two adjacent nodes have the same color and so that the color classes
are of similar sizes.This coloring of the nodes defines a partition of genes into
bins and ensures that no two genes with strongly supported conflict are put in
the same bin. For each bin, individual gene alignments are concatenated to get
a supergene alignment, from which a supergene tree is estimated using
maximum-likelihood analysis. The supergene trees are then used as input to
the summary method of choice to produce an estimated species tree.

A FLOCK OF GENOMES 



are not present in the true tree. We measured
how well the distribution of rooted gene trees
is estimated by comparing triplet frequency dis-
tributions calculated from true gene trees and
estimated gene trees; this is important because
MP-EST uses estimated triplet distributions to
construct the species tree. We measured esti-
mation error in the species tree branch lengths
as follows: Given a branch in an estimated spe-
cies tree that is also present in the true species

tree, we record the ratio of the length estimated
for that branch byMP-EST to the true length of
the branch (both in coalescent units) in the
true (model) species tree (34).

Results

Unbinned MP-EST, binned MP-EST, and con-
catenation on 1000 avian genes with varying BS
support in the gene trees are shown in Fig. 2A (see
also table S2). Binned MP-EST was consistently

and significantly more accurate than concate-
nation [P < 10−5; all the statistical significance
results reported henceforth are based on the
two-way analysis of variance (ANOVA) test with
Benjamini-Hochberg (BH) correction, and all
the P values are reported in tables S4 and S5]
and was also significantly more accurate than
unbinned MP-EST (P = 0.0001). For gene trees
with the highest BS values (i.e., long intron–like
genes), both binned and unbinned MP-EST
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Fig. 2. Effect of binning on MP-EST on the simulated avian data sets
with 1× ILS. (A to C) Species tree-topology error and (D to F) species tree
branch–length error (boxplots with the ratio of estimated branch length to
true branch length for branches of the true tree that appear in the estimated
tree, 1 indicates correct estimation). MP-EST assigned an arbitrarily small
length in the model tree to one branch, which we exclude from branch length
calculations. (A) and (D) fix the numberof genes to 1000genes and vary gene

tree support. The other panels fix gene tree support to UCE-like (B) and (E)
and intronlike (C) and (F) and vary the number of genes. Results are over 10
replicates for the condition with 2000 genes, and 20 replicates for all other
conditions. MP-EST has significantly lower topological error compared with
MP-EST for (A), (B), and (C) (P < 10−5, P < 10−5, and P = 0.002, respectively),
and concatenation for (A) (P = 0.0001) and (C) (P = 0.01). See also tables S2,
S4, S5, and S6, and see fig. S7 for false-positive rates.



species trees had approximately the same error.
However, as gene tree BS values decreased, the
improvements obtained by binnedMP-EST com-
pared with unbinned MP-EST increased (P =
0.003 for the interaction effect; table S5). Con-
catenation was generally more accurate than
unbinnedMP-EST, except for gene trees with the
highest BS. Results for MRP and Greedy showed
similar trends (figs. S6 and S8; supplementary
online text).
When loci exhibit BS corresponding to gene

trees calculated on the UCE-like (moderate BS)
or intronlike (high BS) markers (Fig. 2, B and C),
binned MP-EST was more accurate than un-
binned MP-EST (P < 10−5 for UCE-like and P =
0.002 for intronlike markers). Furthermore, the
advantage provided by binning increased with
the number of UCE-like loci (the impact is sig-
nificant with P = 0.003). Binned MP-EST tended
to be more accurate than concatenation on both
UCE-like and intronlike loci, but the differences
are significant only for intronlike genes (P= 0.011).
The improvement of binned MP-EST over con-
catenation appeared to increase with the num-
ber of intronlike loci, but the interaction effect is
not significant (P = 0.087). Finally, on the mixed-
model condition, concatenation and binnedMP-
EST each had 7% error, whereas all the other
methods had at least 11% error (fig. S6). On the
simulatedmammalian data sets, binnedMP-EST
generally either matched or improved upon both
unbinned MP-EST and concatenation (Fig. 3A).
On themoderate (63%) BS trees, binnedMP-EST
and concatenation had close accuracy (with no
significant differences), but unbinned MP-EST
was significantly less accurate than binned MP-
EST (P < 10−5), and some conditions showed
substantial differences (e.g., 800 loci). On higher
BS (79%) loci, binned MP-EST was significantly
more accurate than concatenation (P = 0.003),
but there were no statistically significant differ-
ences between binned MP-EST and unbinned
MP-EST. On the mixed-model condition, which
most closely resembles the real mammalian data
set in terms of the number of genes and gene tree
support, binned MP-EST had only 1.8% error, con-
catenation had 3.7% error, and unbinned MP-EST
had 4.6% error (Fig. 3C).
MP-EST always underestimated species tree

branch lengths in coalescent units when analyz-
ing estimated gene trees (in some cases by close
to an order of magnitude), whereas the binned
MP-EST trees had more accurate branch lengths
(Figs. 2, D to F, and 3B). Because branch lengths
are model parameters that determine the amount
of ILS, underestimating branch lengths directly
means overestimating ILS.
In the experiments where we varied the

amount of ILS, binned MP-EST had lower aver-
age tree error than both unbinned MP-EST and
concatenation, regardless of the amount of ILS
(Fig. 4). The differences between binned and un-
binned MP-EST are significant for both avian
andmammalian data sets (P< 10−5 andP=0.0001,
respectively), and differences between binned
MP-EST and concatenation are significant on
the avian data sets (P = 0.004). Furthermore, for

the avian data sets, reducing the ILS level (2×
condition) increased the impact of binning, and
increasing the ILS level (0.5× condition) decreased
the impact (P < 10−5 for the interaction effect).
The impact of ILS level on the mammalian data
sets was similar but less pronounced and not sta-
tistically significant. For the reduced ILS (2×)mod-
els on both the avian and mammalian data sets,
binnedMP-ESTwasmore accurate than unbinned
MP-EST at estimating species tree topologies and
branch lengths. For example, with 1000 UCE-like
avian loci, unbinnedMP-EST had 17.2% tree error,
whereas binned MP-EST had only 5.9%. Perform-
ance on true gene trees provides an upper bound
on what a summary method can achieve on es-

timated trees, and, as expected, MP-EST had its
highest accuracy when run on true gene trees
(Figs. 2 to 4).
Statistical binning improved the estimation of

gene tree topologies (Table 1, but see also figs. S2
and S3), with the largest reductions in gene tree
estimation error for the exonlike genes, and decreas-
ing impact as the gene trees increased in BS. The
reductions in triplet gene tree distribution estima-
tion error were even larger (Table 1 and figs. S4
and S5), especially for loci with the lowest BS.

Biological data sets

We studied the avian data set (31) with 14,446
genes and 48 species, amammalian data set with
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Fig. 3. Effect of binning on the simulated mammalian data sets with 1× ILS. (A) Lines show average
topological tree error (missing branch rate) over 20 replicates for 200, 400, and 800 genes. Results are
shown separately for gene trees with 63% and 79% BS. Binned MP-EST has significantly lower error
compared to unbinned MP-EST for the 63% BS gene trees (P < 10−5) and concatenation for the 79% BS
gene trees (P = 0.003). (B) Error in branch lengths estimated byMP-EST in coalescent units is shown. (C)
Topological error is shown for amixed data set with 200 genes of 63%BS level and 200 genes of 79%BS
level. See also table S3 and fig. S8.

A FLOCK OF GENOMES 



447 genes and 37 species (6), yeast with 23 spe-
cies and 1070 genes, vertebrates with 15 species
and 1087 genes, and metazoa with 21 species and
225 genes (32). Each of these data sets shows
evidence of gene tree discord (fig. S13), but they
vary with respect to average BS (fig. S14). Spe-
cies trees estimated using concatenation and
gene trees were available (31, 32), except for the
maximum-likelihood gene trees from the mam-
malian data set, which we recomputed. We par-
titioned on the basis of individual loci when
estimating supergene trees for the avian, meta-
zoa, vertebrates, and yeast data sets (supple-
mentary text). We present bin sizes (fig. S12), as
well as a summary of the results obtained with

binned and unbinned MP-EST on these data
(Table 2).

Avian

The avian data set has very low average BS for
almost all loci (fig. S1) and large topological
distances between estimated gene trees. An
unbinned MP-EST analysis of the full 14,446
loci produced a tree (Fig. 5A) with low to mod-
erate support for some branches and failed to
recover four key clades [Columbea (flamingo,
grebe, pigeon, mesite, sandgrouse), Cursores
(crane, killdeer), Otidimorphae (bustard, turaco,
cuckoo), and Australaves (parrot, passerine,
falcon, seriema)] that are recovered consistently

in other analyses on the full genome data set (31),
including concatenation analyses (fig. S17). Fail-
ure to recover Australaves is particularly sur-
prising, as it has been recovered across different
studies and types of data (25, 26, 41, 42). In con-
trast, binned MP-EST on all 14,446 loci (Fig. 5A)
had more highly supported branches and recov-
ered all key clades.
An unbinned MP-EST tree generated on the

introns-only data set (31) had 31 out of 45
edges with 100% support and 34 edges with
95% or higher BS; it also recovered all the key
cladesmissing from the unbinnedMP-EST tree
computed on the full set of 14,446 loci. However,
the binned MP-EST analysis (fig. S16) on the
introns-only data set also recovered all the key
clades and had higher support (33 edges with
100% support and 35 with 95% support or more),
with increased support for some key novel clades
(31).

Metazoa

The Metazoan data set also represents a chal-
lenging analysis, because the average BS is low
(only 49%). The most important difference be-
tween the unbinned and binned MP-EST trees
(Fig. 5B) is among Chordates, where the un-
binned MP-EST tree put Cephalochordates (rep-
resented by Branchiostoma floridae) as sister
to vertebrates (Craniates), and the binned MP-
EST tree [as in the concatenation analysis, (fig.
S20)], put Urochordates (represented by Ciona
intestinalis) as sister to vertebrates. Although
Cephalochordates were traditionally thought to
be the sister to all the extant vertebrates (43),
recent evidence supports Urochordates as the
sister to all vertebrates (44–46), and hence, the
binned MP-EST tree is likely correct. There are
also some differences between the two trees
within Protostomia, but both MP-EST trees
had low support for those relations, and neither
was congruent with the literature (supplemen-
tary text).

Mammalian

The mammalian data set has gene trees with
substantially higher average BS (71%) but also
demonstrates substantial gene tree incongru-
ence. Differences between MP-EST and con-
catenation (using maximum likelihood) were
observed for tree shrews and bats: The con-
catenated analysis put Scandentia (tree shrews)
as sister to Glires (Rodentia/Lagomorpha), where-
as theMP-EST analysis put Scandentia as sister
to primates (6). We reanalyzed this data set and
identified 21 loci with mislabeled sequences
(subsequently confirmed by the authors) plus two
outlier loci (fig. S18 and supplementary text).
We removed these 23 loci and reanalyzed the
data using concatenation and both binned and
unbinned MP-EST (fig. S19). We recovered a con-
catenation tree topologically identical to the
concatenation tree in (6). The unbinnedMP-EST
tree on this reduced gene set was similar to the
unbinned MP-EST tree reported in (6) but had
lower support for tree shrews as sister to primates
[99% in (6), 64% with our analysis], and there was

SCIENCE sciencemag.org 12 DECEMBER 2014 • VOL 346 ISSUE 6215 1250463-5

Fig. 4. Effects of ILS levels for the simulated avian and mammalian data sets. Levels of ILS are
changed bymultiplying all branch lengths in themodel species tree by a factor of 0.5 (to increase ILS) or 2
(to reduce ILS). (A) Lines show average topological tree error (missing branch rate) over 20 replicates of
1000 UCE-like gene trees for avian and 200 gene trees with 63% BS for mammalian data sets. Binned
MP-EST has significantly lower error compared with unbinned MP-EST for the avian (P < 10−5) and the
mammalian (P = 0.0001) data sets and concatenation for the avian data set (P = 0.004). (B) Error in
branch lengths estimated by MP-EST in coalescent units.



one topological difference among low support
edges; the exact cause of these differences is not
clear to us.
The binned MP-EST and unbinned MP-EST

trees on the reduced gene set were very similar,
but tree shrews were sister to Glires with 80%
support in the binned MP-EST tree, just as their
positionwas recovered in the concatenation tree.
Thus, the placement of Scandentia, and whether
it is sister to primates or to Glires, depends on the
mode of analysis. This agreement between the
binned MP-EST analysis and concatenated anal-
ysis of the reduced data set may be an important
finding, but contradicts Janecka et al. (47) (which
specifically addressed this question) and (48).
However, these two studies did not use coalescent-
based methods to estimate species trees. The un-
binned and binned MP-EST trees placed bats
identically as sister to all other Laurasitheria (ex-
cept for the basal Eulipotyphyla) and so differed
from the concatenation tree with respect to bats.

Vertebrates

The vertebrate data set had the highest average
BS (76%) of all data sets we examined. Binned
and unbinned MP-EST trees had the same to-

pology, and both were topologically identical to
the concatenation tree on the same data (fig.
S21 and supplementary text).

Yeast

The yeast data set has relatively high average
BS (72%). The binned and unbinned MP-EST
topologies were identical, and both had 100%
support for all but one branch (fig. S22).

Discussion

Our simulation results demonstrate that binning
reduces error in estimated species tree topologies
and branch lengths, gene tree topologies, and
gene tree distributions under the conditions
we studied. These reductions in error result in
estimations of ILS that are closer to correct ILS
levels than unbinned MP-EST, which tends to
overestimate ILS levels. In our analyses, although
unbinned methods are rarely more accurate
than concatenation, binned MP-EST is almost
always at least as accurate as concatenation, and
there aremanymodel conditions inwhich binned
MP-EST is more accurate than concatenation,
whereas unbinned MP-EST is less accurate than
concatenation.

The biological data sets examined here show
that binning affects analyses of data sets with
less well supported gene trees (avian and meta-
zoa) and has little impact on the yeast and ver-
tebrate data sets, both of which have very well
resolved gene trees. Notably, binning impacts
the MP-EST analysis of the mammalian data set,
which also has fairly well resolved gene trees.
Where binning has an impact, binned MP-EST
typically produces trees in closer agreement with
accepted reconstructions than unbinnedMP-EST.
Binning reduces gene tree incongruence on bi-
ological data sets (fig. S13), which suggests that
binned MP-EST may not overestimate ILS on bio-
logical data sets as much as unbinned MP-EST
does. This trend is consistentwith performance on
simulated data and suggests that more-accurate
estimates of ILS in biological data may be ob-
tained through the use of statistical binning.
As binning can group genes together with

different true topologies, it can result in mis-
specified models in the supergene tree estima-
tion step and can reduce the accuracy of the
estimated gene tree distributions. However, our
simulations suggest that estimated gene tree
distributions are more accurate after binning.
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Table 1. Gene tree estimation error, with and without binning for simu-
lated data sets. Results are shown for fixed number of genes (1000 for avian
and 200 formammalian) and levels of ILS (1×, i.e., observed), but also see figs.
S2 to S5. Individual gene tree (GT) error is mean topological distance, mea-
sured using the missing branch rate between the true gene tree and all 200
bootstrap replicates of each estimated gene tree. For the supergene trees,
each bootstrap replicate of each supergene tree is compared separately

against each true gene tree for the genes put in that bin.We also characterize
gene tree distributions by calculating the triplet frequencies for all possible
triplets, and we do this both for true and estimated gene trees (using all 200
bootstrap replicates of all genes and supergenes in the case of estimated
trees). Thus, we obtain a true and an estimated triplet frequency distribution
for each of the triplets.We report themeanKullback-Leibler (KL) divergence of
the estimated distribution from the true distribution.

Tree Genomic
markers

Length
(bp)

Individual GTerror (%) GTdistribution error (KL)

Unbinned Binned Unbinned Binned

Avian
(1000 genes)

Exonlike 250 79 57 0.234 0.025
UCE-like 500 69 57 0.120 0.008
Intronlike 1000 55 51 0.033 0.008

Long intron–like 1500 46 45 0.011 0.007
Mammalian
(200 genes)

63% BS 500 43 35 0.119 0.019
79% BS 1000 27 26 0.038 0.027

Table 2. Results on the biological data sets.We compare MP-EST trees in terms of BS (the number of edges with BS equal to 100%, edges with BS at least
95%, and average BS), the distance between concatenation (DC) and MP-EST trees (number of missing branches), and with respect to biologically interesting
differences between the two trees. The total number of branches in each tree is given parenthetically in the first column.

Tree (branches) Gene trees
Bootstrap Support

DC Interesting clades
100% >95% Mean

Avian (45) Unbinned 29 34 0.95 12 Did not recover Australaves, Columbea, Cursores,
and Otidimorphae, all recovered by other
phylogenomic analysis

Binned-50% 36 39 0.96 5
Mammals (34) Unbinned 30 30 0.98 2 Recovers Scandentia/Primates

Binned-75% 30 31 0.98 1 Recovers Scandentia/Glires
Metazoa (18) Unbinned 10 10 0.83 5 Rejects Olfactores (urochordates/vertebrates)

and Eumetazoa
Binned-75% 10 12 0.89 2 Rejects Eumetazoa

Vertebrates (15) Unbinned 14 15 1 0
Binned-50% 14 14 0.99 0

Yeast (20) Unbinned 19 20 1 1
Binned-50% 19 19 0.98 1

A FLOCK OF GENOMES 



We suggest that this is because binning will never
group genes with different topologies together
unless the conflicting branches had low support,
which likely results from insufficient phyloge-
netic signal. As we have shown, the inclusion of
poorly estimated gene trees distorts the estimated
triplet gene tree distribution, and binning reduces
this noise, which suggests that the overall impact
of binning is beneficial. These results are also
consistent with the observation that coalescent-
based summarymethods can be robust to recom-
bination (49).

Our study explored gene tree estimation error
arising from insufficient phylogenetic signal in
the gene sequences; however, gene tree estimation
error can also come from poorly estimated align-
ments (50) or errors introduced during the tree
inference (51, 52). Because our studies focused
on insufficient phylogenetic signal, we have no
evidence that binning could reduce phylogenetic
error due to alignment error or misspecification
for the sequence evolution model. Consequently,
appropriate care should be devoted to obtain-
ing good alignments and choosing an adequate

model of sequence evolution to reconstruct both
gene and supergene trees.
In our simulation, we only allowed ILS as a

source of discord between true gene trees and
true species trees; hence, these model condi-
tions favor MP-EST (which is based on the same
model used for simulations) over concatenation
(which assumes no ILS is present). Given this,
the fact that unbinned MP-EST is less accurate
than concatenation inmany conditions is note-
worthy. Future studies based on model condi-
tions in which other sources of gene tree discord
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Fig. 5. Results on the (A) avian and (B) metazoan biological data sets using binned and unbinned MP-EST. Branches without designation represent
100% support.



(e.g., duplication and loss, incorrect orthology
assessments, recombination, introgression, hori-
zontal gene transfer, and hybridization) are in-
cluded would enable a better understanding
of the relative accuracy of concatenation and
coalescent-based species tree estimation and the
impact of using binning under those conditions.
Statistical binning is just one step in a pipe-

line that begins with sequence alignments on
different loci and ends with an estimated spe-
cies tree, and variations of this pipeline might
lead to improved accuracy. For example, gene
trees could be estimated using Bayesianmethods
instead of maximum likelihood (53), and rigor-
ous statistical tests for combinability (54) could
be used instead of bootstrap branch support
values; both variants might improve species tree
estimations but would result in substantially
increased running time. Bins could also be created
without attempting to produce balanced sizes;
in which case, bins could be weighted by their
size. However, binning without attempting to
evaluate whether genes have a common tree
[as used in the “naïve binning” technique (28)]
may not provide the improvements in accura-
cy seen here. Statistical binning is not likely to
be useful for methods that estimate species
trees directly from sequence data [e.g., (21–
23)], because binning reduces the amount of
data given to the method and can only be be-
neficial if it also improves the quality of the
input data.
Our study demonstrates that binning is useful

when the input is a set of estimated gene trees,
because the method typically reduces the esti-
mation error in the gene trees; however, binning
sites together cannot improve the quality of se-
quence data. Furthermore, binning cannot be
used with methods (like SNAPP) that are re-
stricted to biallelic markers, because binning
biallelic markers would create markers exhibit-
ing at least three states and thus would violate
that property.
The algorithmic techniques used in statisti-

cal binning are fast enough to use on data sets
with many thousands of loci (such as the avian
phylogenomics data set). Thus, statistical binning
enables coalescent-based methods to be used
on genome-scale data and can help to resolve
challenging phylogenetic questions, including
the avian Tree of Life.

Methods

The statistical binning technique includes a com-
binability test that evaluates whether a given
pair of genes is likely to have significant topo-
logical incongruence, so that a concatenated
analysis of those two genes is likely to be prob-
lematic. Because supergene trees can be esti-
mated using partitioned concatenated analyses
(which would allow the branch lengths and other
model parameters to be reestimated for each
gene within a partition), we only need to consider
topological incongruence. Thus, we can place
genes with the same true gene tree topology in
the same bin, even if the trees differ in other
respects (e.g., branch lengths).

We use maximum likelihood with bootstrap-
ping to estimate gene trees with branch support
values, and we say that a given pair of trees ex-
hibits conflict at threshold t if there is a pair of
incompatible branches (meaning they cannot
coexist in any tree), one in each of the two gene
trees, each with BS of at least t. Two trees that do
not exhibit conflict at threshold t are combinable,
and a set of trees for which all pairs are com-
binable is a combinable set.
Saying that two branches are incompatible

means that no tree can be constructed that has
both of these branches (55) (more specifically,
no tree exists with branches that induce the
bipartitions defined by these two branches).
Thus, to test two trees for incompatibility at
threshold t or higher, we collapse all branches
in each tree with support below t, and then ask
whether a tree exists that is a common refine-
ment of these two collapsed trees. Testing for
compatibility of two trees can be performed in
linear time (55); hence, this calculation is fast.
The partitioning step uses a graph-based op-

timization, in which we build a graph in which
each gene is represented by a node and an edge
is present between two nodes (i.e., genes) if the
estimated trees on that pair of genes exhibit
conflict at threshold t. By definition, the graph
depends on the parameter t; thus, smaller values
for t will generally consider trees less likely to
be combinable than larger values.
The graph created is called an incompatibility

graph. To create bins from this graph, we color
the nodes of the graph so that no two nodes with
the same color are adjacent, and put all nodes
with the same color into a common bin. Each bin
thus contains a set of genes where no pairwise in-
compatibility has support of t or greater; hence,
adjusting the support threshold t enables more
aggressive or conservative binning. Once bins
are formed, alignments of genes in the same bin
are concatenated into a supergene alignment, and
supergene trees are estimated on these super-
gene alignments usingmaximum likelihood. These
supergene trees are used as input to the summary
method of choice.
Because the statistically consistent methods

use the distribution of gene trees to estimate the
species tree, it is important for the supergene
tree distribution to be close to the gene tree dis-
tribution; for this reason, we seek a node coloring
in which the different color classes have approx-
imately the same size (i.e., are balanced). We also
seek anode coloringwith a small number of colors,
so that we have the largest bins we can, given the
constraints imposed by combinability. However,
finding a minimum node coloring (regardless
of whether bins are balanced) is NP-hard and,
consequently, is believed to not be solvable in
polynomial time (56). Therefore, we developed a
heuristic algorithm [based on the Brélaz heuristic
(56) (see fig. S10)] for finding the smallest number
of balanced bins (34). Our greedy heuristic algo-
rithm processes genes one by one in a particular
order and adds each gene to the smallest bin that
has no incompatibility with it (34). When two or
more bins have the same smallest size, the al-

gorithm breaks the ties arbitrarily. Our experi-
ments indicate that variations causes by these
arbitrary choices mostly affect low support
branches (see fig. S11), but also that a consensus
tree frommultiple runs of the binning approach
can have higher average accuracy than individ-
ual runs (fig. S11). Therefore, if computational
resources permit, we recommend that several
runs of statistical binning be applied (each break-
ing ties differently) to produce several different
estimated species trees. These trees can be com-
pared with each other, to explore sensitivity and
reliability, or a consensus tree of these trees can
be used as a point estimate of the species tree.
We set the statistical support threshold t as

follows. We note that using 75% for the BS has
been a standard threshold for branch reliability
(57), and so 75% represents a reasonable setting
for t; however, when the data sets are large, we
can afford to be more conservative and pick a
smaller threshold. We also explored the effect
of the support threshold (fig. S9) and saw that
setting t to either 50 or 75% gave good results.
Therefore, we set two thresholds: a conserva-
tive threshold of t = 50% that we use for data
sets with at least 1000 genes and a moderate
threshold of t = 75% that we use for the other
data sets.
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