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Abstract

Aims: The estimation of species trees typically involves the estimation of trees and alignments on many

different genes, so that the species tree can be based upon many different parts of the genome. This kind

of phylogenomic approach to species tree estimation has the potential to produce more accurate species tree

estimates, especially when gene trees can differ from the species tree due to processes such as incomplete lineage

sorting (ILS), gene duplication and loss, and horizontal gene transfer. Because ILS (also called “deep coalescence”)

is a frequent problem in systematics, many methods have been developed to estimate species trees from gene trees

or alignments that specifically take ILS into consideration. In this paper we consider the problem of estimating

species trees from gene trees and alignments for the general case where the gene trees and alignments can be

incomplete, which means that not all the genes contain sequences for all the species.

Results: We formalize optimization problems for this context and prove theoretical results for these problems.

We also present the results of a simulation study evaluating existing methods for estimating species trees from

incomplete gene trees.

Conclusions: Our simulation study shows that *BEAST, a statistical method for estimating species trees

from gene sequence alignments, produces by far the most accurate species trees. However, *BEAST can only

be run on small datasets. The second most accurate method, MRP (a standard supertree method), can analyze

very large datasets and produces very good trees, making MRP a potentially acceptable alternative to *BEAST

for large datasets.
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Introduction

Phylogenetic tree estimation for individual genes is a challenging problem for many reasons, especially for

large datasets where nucleotide alignment estimation can be difficult [1–3] and errors in gene sequence

alignment can result in errors in the estimated gene trees. However, new alignment methods, such as

MAFFT [4,5], Opal [6], PRANK [7], and SATé [1,8], have been developed that produce improved alignments

compared to earlier methods. In addition, while maximum likelihood phylogeny estimation used to be too

computationally intensive to be used on datasets with thousands of sequences, newer methods, including

RAxML [9], FastTree-2 [10], GARLI [11], and PhyML [12], have made large-scale maximum likelihood

analysis much more accessible. Of these methods, RAxML is probably the most popular, but as shown

in [13], FastTree-2 is much faster than RAxML and may be as accurate as RAxML for very large datasets.

Finally, SATé [1, 8], a method that co-estimates both alignments and trees using an iterative divide-and-

conquer approach, has been shown to produce more accurate alignments and trees than standard two-phase

methods (first align and then estimate a tree) on large datasets with hundreds to thousands of sequences.

Thus, in the last ten years or so, there has been a dramatic improvement in computational methods for

estimating gene trees and sequence alignments. However, species tree estimation represents an additional

challenge, because no individual gene tree is necessarily a good estimate of the true species tree. That is,

for a number of different biological reasons, including incomplete lineage sorting (ILS), gene duplication and

loss, and horizontal gene transfer, gene trees can differ from the species tree, as discussed in [14, 15]. As

a result, species tree estimations need to take causes of discord between gene trees and species trees into

consideration, in order to produce reasonably accurate estimates of the species tree.

In this paper, we consider the problem of estimating species trees from estimated gene trees when the

true gene trees can differ from the true species trees due to incomplete lineage sorting, also known as deep

coalescence. Because of the frequency of deep coalescent events in phylogenetic analyses of closely related

species, many methods for estimating species trees from gene trees or gene sequence alignments have been

developed that explicitly take deep coalescence into account; see [16] for a relatively recent survey of methods,

and [15] for a discussion of the importance of these methods for biological data analysis. Studies evaluating

these methods have examined performance with respect to tree error and computational requirements on

simulated datasets (surveyed in [17]), all restricted to datasets in which all gene trees have at least one

individual for each species. Most of these studies have shown that methods that explicitly use statistical

models to inform the estimation produce the best results; however, [17] showed that some very simple fast

methods (in particular, the greedy consensus) came close to the accuracy of a statistically-based method,
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BUCKy [18] on tree distributions estimated using MrBayes [19].

In this paper we consider the problem of estimating species trees from incomplete estimated gene trees,

by which we mean the case where the gene trees might not contain any individuals for some species. In this

case, methods that require that all the gene trees have the same set of taxa (such as the greedy consensus

and BUCKy) cannot be applied. In addition, results from prior studies that evaluated methods on inputs

in which all gene trees have at least one individual from each species are not necessarily applicable, since

performance on incomplete gene trees could be different.

We begin with a study of the Minimize Deep Coalescence (MDC) problem (find the species tree for

which there is a minimum total number of deep coalescences) introduced by Maddison [14]. We show how to

extend MDC to the case where the gene trees are incomplete, and we prove that Phylonet-MDC [20] solves

this exactly. We then report on a simulation study we performed to evaluate methods for estimating species

trees from incomplete gene trees or alignments for datasets with multiple genes and with 11, 17, or 100 taxa.

We compare *BEAST [21] (a Bayesian method for estimating species trees from gene sequence alignments

when genes can differ from species trees due to ILS) to methods based upon MDC (iGTP-MDC [22] and

Phylonet-MDC). We also make comparisons to a heuristic for MRP (matrix representation with parsimony,

a standard supertree method) [23, 24] known to be one of the most accurate supertree methods [25, 26] and

to heuristics to minimize duplications or duplications+losses in iGTP [22], none of which consider ILS when

estimating species trees. We compare these methods on datasets simulated on gene trees that can differ from

species trees due to ILS and report the missing branch rates of each species tree that we compute.

Although we did not attempt to run *BEAST on the 100-taxon datasets (due to its excessive computa-

tional requirements on large datasets), it produced the most accurate trees on the datasets with 11 or 17

taxa. Comparisons between other methods showed that generally MRP gave the most accurate results, and

that (when it could be run), the exact version of Phylonet-MDC produced the next most accurate results. In

addition, MRP was very fast on these datasets, producing results in under a minute on all datasets. These

results suggest that at least for some conditions involving incomplete gene trees, methods that attempt to

solve MRP may be computationally tractable ways of producing reasonably accurate species trees, and per-

haps better than methods that optimize the MDC criterion. However, statistical methods (such as *BEAST)

may be able to produce substantially more accurate trees than all other methods.
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Name Meaning Comments

ILS Incomplete Lineage Sorting Also called “deep coalescence”
MBMC Minimizing B-maximal clusters A computational problem for estimating

species trees from complete gene trees, shown
to be equivalent to MDC in [27]

MBMCinc MBMC for incomplete gene trees Extension of MBMC to incomplete gene trees,
shown here to be equivalent to MDCinc.

MDC Minimize Deep Coalescence Optimization problem for species tree
estimation in the presence of ILS, defined

only for complete gene trees
MDCinc MDC for incomplete gene trees MDCinc seeks completions of all gene

trees and a species tree, so that the
species tree optimizes MDC with respect to

the completed gene trees.
MRP Matrix Representation with Parsimony Standard optimization problem for supertree

computation, known to be NP-hard.

Table 1: Acronyms used in this paper

Name Summary Reference

*BEAST Bayesian co-estimation of gene trees [21]
and species trees, in the presence of ILS

FastTree-2 (FT) Fast maximum likelihood phylogeny estimation. [10]
FT-75 refers to the tree obtained by running FastTree-2

and then collapsing all branches with support below 75%.
iGTP Gene Tree Parsimony software, implementing a [22]

heuristic search to construct species trees from sets
of gene trees, under three criteria: MDC,
duplications, and duplications plus losses

PAUP* Phylogenetic Analysis using Parsimony (*and [28]
Other Methods). We use heuristics in PAUP*

for parsimony, applied to an MRP matrix we compute.
Phylonet Software package that performs several functions [20]

related to species phylogeny estimation from sets of
gene trees. In this paper we use Phylonet to

find solutions (exact or heuristic) to the MDC problem.

Table 2: Software used in this paper
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Theoretical results for MDC

We begin by defining the MDC problem in the context of complete rooted, binary gene trees. We then show

how to extend MDC to incomplete gene trees.

MDC for complete gene trees.

The MDC problem is as follows:

• Input: A set T = {t1, t2, . . . , tk} of rooted, binary gene trees with each tree ti on the same set S of

taxa.

• Output: a rooted, binary species tree T that minimizes the number of extra lineages with respect to

T , denoted by XL(T, T ) =
∑

i XL(T, ti)

To define the MDC problem, therefore, we need to define XL(T, ti), i.e., the number of extra lineages of

a species tree T with respect to a gene tree ti. Visually, this is defined by embedding the gene tree ti into

the species tree T , and then counting how many lineages there on each edge of the species tree; for a given

edge, the number of extra lineages is one less than the total number of lineages on the edge [14]. This visual

definition of the MDC cost is not necessarily easy to understand.

An alternative definition is given in terms of what are called “B-maximal clusters”, which we now define.

A cluster is a subset of the leaf set of a rooted tree, consisting of all the leaves below some internal node.

Thus, given a cluster within a tree defined by the node v, we can also define its parent cluster to be the

cluster associated with the parent of v. Furthermore, the “parent edge” of a cluster C defined by the node

v (i.e., v is the root of the subtree whose leafset is C) is the edge e = (v, w), where w is between v and the

root of t. Let T and t be rooted binary trees on S, with T denoting the species tree and t denoting the gene

tree. Let B be a cluster of T . We will say that cluster A of t is B-maximal if A ⊆ B and the parent cluster

for A is not a subset of B.

For a cluster B of T , we define kB(t) to be the number of B-maximal clusters of t, and we let wB(t) =

kB(t) − 1. It is now known that the embedding of the gene tree t into the species tree T that maps every

node in t to MRCA (most recent common ancestor) in T of the leafset below v optimizes the MDC cost.

Furthermore, for this embedding, the number of lineages “leaving” the parent edge of the cluster B (i.e., the

edge between B and the root of the tree T ) is kB(t); therefore, the number of extra lineages on the parent

edge is wB(t) (one less than the number of lineages) (see, for example, [27]). Note that wB(t) ≥ 0 since t

and T have the same set of taxa, and that XL(T, t) =
∑

B wB(t), where the sum is taken over all clusters
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B in the tree T , is the number of extra lineages implied by the pair t, T . This is what is meant by the MDC

cost for T with respect to gene tree t.

The MDC problem can then be restated as follows:

• Input: set T = {t1, t2, . . . , tk} of binary rooted trees on leafset S.

• Output: binary rooted species tree T on S such that XL(T, T ) =
∑

i

∑
B wB(ti) is minimized, where

i ranges from 1 to k and B ranges over the clusters in the species tree T .

Than and Nakhleh noted that this problem could be solved exactly by finding a minimum weight clique

of size n − 2 in a graph in which there is a node for every possible cluster in the species tree (i.e., subset

of taxa), an edge between nodes where their clusters are compatible (meaning that they can co-exist in a

rooted tree), and where the weight of the node for cluster B is
∑

i wB(ti) [29]. This observation yielded

the exact version of Phylonet-MDC [20]. By restricting the set of nodes to those clades that appear in the

input set of gene trees, they produced the heuristic version of Phylonet-MDC; this method solves the MDC

problem exactly when constrained to species trees whose clades are drawn only from the input gene tree

clades. Finally, Yu, Warnow and Nakhleh [27] showed how to modify the Phylonet-MDC algorithm so that it

could work with unrooted, incompletely resolved gene trees and find optimal rooted refinements and species

trees that minimize the MDC score.

Extension to Incomplete Gene Trees.

We now discuss how to extend the MDC criterion to handle incomplete gene trees, where the gene tree leaf

sets may not contain all the species. We begin with a definition: If S is the full set of taxa and t is a binary

rooted tree on a subset of S, then we say that t′ is a completion of t if t′ is a binary rooted tree that contains

all the taxa in S and that agrees with t when restricted to the taxa in t. Thus, a completion t′ is obtained

by adding additional leaves to t so that it contains all the taxa it is missing. With this, we can now define

MDC for incomplete gene trees.

MDC for incomplete gene trees (MDCinc).

• Input: set T = {t1, t2, . . . , tk} with each ti a rooted binary tree on leafset Si, with Si ⊆ S (i.e., each

ti is an incomplete rooted binary tree)

• Output: binary rooted species tree T and completions t′i of ti so as to minimize XL(T, T ′), where

T ′ = {t′
1
, t′

2
, . . . , t′k}.
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We will refer to this problem as MDC-incomplete, and we will denote a solution to MDC-incomplete on

input set T by MDCinc(T ) = (T, T ′).

Recall that kB(t) is defined for the case where the gene tree t is rooted and has the same set of taxa as

the species tree; in this case, it equals the number of B-maximal clusters of t. Furthermore, again for the

case where the gene trees all have the same set of taxa, we have defined XL(T, T ) =
∑

B

∑
i wB(t), where

B ranges over all clusters of T , i ranges from 1 to k, and wB(t) = kB(t) − 1. However, we will modify the

definition of wB(t) to appropriately reflect the possibility that the cluster B may contain taxa that do not

appear in t. That is, we set

• wB(t) = 0 if B ∩ L(t) = ∅ (where L(t) denotes the leafset of t), and

• wB(t) = kB(t) − 1, otherwise.

In other words, we generally use the same definition for wB(t), except when B is entirely disjoint from the

leafset of t. This definition ensures that wB(t) ≥ 0 for all clusters B and all gene trees t.

Minimizing B-maximal clusters (MBMCinc).

• Input: set T = {t1, t2, . . . , tk} of binary rooted trees, with ti on leafset Si, for i = 1, ..., k.

• Output: binary rooted species tree T on S = ∪iSi such that
∑

i

∑
B wB(ti) is minimized, where i

ranges from 1 to k and B ranges over all clusters in T .

We refer to this problem as MBMC-incomplete, and the optimal tree given input T is given by MBMCinc(T ).

Note that when Si = Sj for all i, j, then all the gene trees are complete (on the same set of taxa), and the

problem is identical to the MDC problem (optimal solutions to this problem minimize the number of extra

lineages).

The main result in this paper is the following:

Theorem 1: Let T be a set of incomplete, rooted, binary gene trees. If T = MBMCinc(T ) then

there exists extensions t′i for each ti so that MDCinc(T ) = (T, T ′), where T ′ = {t′
1
, t′

2
, . . . , t′k}. Also, if

MDCinc(T ) = (T, T ′), then T = MBMCinc(T ).

In other words, the species tree T that optimizes the MBMCinc criterion is the species tree component

of the optimal solution to MDCinc.
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Phylonet-MDC and iGTP-MDC. The software packages Phylonet [20] and iGTP [22] handle incomplete gene

trees differently when attempting to solve MDC, in that they can compute MDC scores differently. In

particular, Phylonet defines the MDC score using the MBMCinc cost, as described above (i.e., the cost of a

species tree T is
∑

i

∑
B wB(ti), where B ranges over the clusters in T and i ranges from 1 to k). Theorem 1

thus shows that Phylonet-MDC computes the MDC score correctly. By contrast, there are inputs for which

iGTP-MDC does not return this score, indicating that iGTP-MDC defines the MDC score differently for

incomplete gene trees. One particular instance in which this occurs is as follows:

• Input gene trees: T1 = (((a, b), c), d), T2 = ((b, c), (d, e)), and T3 = ((a, d), (b, e)).

• Output of Phylonet-MDC exact version: ((d,e),(a,(b,c,))), claiming 3 extra lineages.

• Output of iGTP(MDC): ((d,e),(c,(a,b))), and claims 2 extra lineages.

By our calculation and definition for MDCinc, Phylonet-MDC correctly computes the number of extra

lineages, but iGTP does not. We conjecture that iGTP seeks the species tree T that minimizes
∑

i XL(Ti, ti),

where Ti is the subtree of T induced by Si. Therefore, iGTP-MDC and Phylonet solve different problems

when given gene trees that are incomplete.

Establishing the relationship between MDCinc and MBMCinc.

In this section we establish the relationship between optimizing the MDCinc and MBMCinc problems. As

a result of this theorem, it will follow that the exact formulation of Phylonet-MDC solves the MDC problem

optimally. That is, given an input of incomplete, binary rooted gene trees, to find an optimal species tree

and completions of the binary gene trees it will suffice to find a minimum weight clique containing n − 2

vertices (where n is the number of taxa) in the graph defined by Phylonet, which has one vertex for each

possible cluster, edges between vertices exist if and only if their clusters are compatible (either disjoint or

one contains the other), and the weight on the vertex for cluster B set to wB.

We begin with the following lemma.

Lemma 1. Let T and t be rooted binary trees with L(t) ⊂ L(T ), and let X be a maximal cluster in T

with X ∩ L(t) = ∅. Let B0 be the sibling cluster of X in T (i.e., X ∪ B0 is the smallest cluster in T that

properly contains X), and let A0 be any B0-maximal cluster in t. Let t′ be the rooted binary tree obtained

by modifying t by inserting the clade for X as the the sibling to the clade on A0. Then for all clusters B of

T , wB(t) = wB(t′).
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Proof. We consider the four cases that can occur in a species tree T in which B, B0 and X are clusters:

• Case 1: B ⊆ X

• Case 2: B ⊆ B0

• Case 3: B0 ∪ X ⊆ B

• Case 4: (B0 ∪ X) ∩ B = ∅

We take each case in turn.

Case 1: B ⊆ X . In this case, B is a cluster in the clade on X , and hence a cluster in t′. Therefore,

wB(t′) = 0. Since B ⊆ X , it follows that B ∩ L(t) = ∅, and so (by definition) wB(t) = 0.

Case 2: B ⊆ B0. First, if B ∩L(t) = ∅, then B ∩L(t′) = ∅ and wB(t) = wB(t′) = 0. Hence, assume that

B ∩ L(t) 6= ∅. We will show that A is a B-maximal cluster in t if and only if A is a B-maximal cluster in

t′, and so wB(t) = wB(t′). Suppose A is B-maximal in t. Then A is a cluster of t and (since A ⊆ B ⊆ B0)

also a cluster of t′. Hence A will be B-maximal for t′ unless the parent cluster in t′ of A is a subset of B.

Since A is B-maximal in t, the parent cluster of A in t is not a subset of B. Note that A’s parent cluster in

t′ is either the same cluster as in t, or else the parent cluster in t′ contains A0 ∪X ; in either case, the parent

cluster of A in t′ is not a subset of B. Therefore, A is also B-maximal in t′.

Conversely, suppose A is a B-maximal cluster in t′. Since A ⊆ B ⊆ B0, A is a cluster in t. If A is B-

maximal in t, then we are done. Else, suppose A is not B-maximal in t. Note that A cannot have the same

parent cluster in t and t′, since otherwise A is also B-maximal in t′ (contradicting our hypothesis), and so A’s

parent cluster in t′ must contain A0∪X . Hence, A’s parent cluster in t must be defined by an internal node on

the path from the root of A0 to the root of t. Label the nodes on that path root(A0) = v0, v1, . . . , vt = root(t),

and let the “other” child of each vi, i = 1, 2, . . . , t be wi, defining cluster Ai. Note that A1 is the sibling

cluster to A0 in t. Then A = Ai for some i. Note that if A = A0, then A is B-maximal in t (since A0 is B0-

maximal in t and B ⊆ B0). Note also that A 6= A1, since otherwise A1 is B-maximal, and so A1 ⊆ B ⊆ B0,

contradicting that A0 is B0-maximal. Now suppose that A = Ai, for some i ≥ 2. Then the parent cluster

of A in t contains X , and so is not a subset of B, establishing that A is B-maximal in t as well. Therefore,

wB(t) = wB(t′).

Case 3: B0∪X ⊆ B. Our first observation is that A0 is B-maximal in t if and only if A0∪X is B-maximal

in t′. Hence, we need only concern ourselves with the B-maximal clusters in t other than A0, and (equally)
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with the B-maximal clusters in t′ other than A0 ∪ X . However, when A 6= A0, it is easy to see that A is a

B-maximal cluster in t if and only if A is a B-maximal cluster in t′. Hence, wB(t) = wB(t′).

Case 4: (B0 ∪ X) ∩ B = ∅. It is easy to see that for any cluster A, A is B-maximal in t if and only if A

is B-maximal in t′, and so wB(t) = wB(t′).

The following lemma is obvious and the proof is omitted:

Lemma 2. Let t be an incomplete gene tree, T a species tree, and t′ a completion of t to the taxon set of

T . Then wB(t) ≤ wB(t′) for all clusters B of T .

Theorem 1. Let T be a set of incomplete, rooted, binary gene trees. If T = MBMCinc(T ) then there exists

extensions t′i for each ti so that MDCinc(T ) = (T, T ′), where T ′ = {t′
1
, t′

2
, . . . , t′k}. Also, if MDCinc(T ) =

(T, T ′), then T = MBMCinc(T ).

Proof. Let t ∈ T be given, and let T = MBMCinc(T ). By Lemma 2, for any completion t′ of t and any

cluster B of T , wB(t′) ≥ wB(t). By Lemma 1, there is a completion t′ of t that achieves wB(t) = wB(t′)

for all clusters B of T . Since t was arbitrary, we can let T ′ denote the set of completions of each t ∈ T so

that wB(t) = wB(t′) for all clusters B of T . Hence, the number of extra lineages in T with respect to T ′ is

∑
B

∑
i wB(t), where B ranges over the clusters B of T and i ranges from 1 to k, where T = {t1, t2, . . . , tk}.

It follows, by Lemma 2, that T has the minimum number of extra lineages with respect to any set of

completions of T , and so (T, T ′) is a solution to MDCinc(T ).

For the converse, let (T, T ′) be a solution to MDCinc(T ), with T ′ = {t′
1
, t′

2
, . . . , t′k} (each t′i a completion

of ti). Then since T ′ is a set of rooted, binary, complete gene trees (i.e., all on the same set of taxa as

T ), it follows that XL(T, T ′) =
∑

i

∑
B wB(t′i), as B ranges over the clusters of T and i ranges from 1...k,

and that this is the minimum possible among all species trees T and set T ′ of completions of the gene

trees. Therefore, for all clusters B in T and for all i, wB(ti) = wB(t′i), since otherwise we could complete ti

differently. Now suppose the tree T isn’t an optimal solution to MBMCinc(T ). Therefore, for some other

binary rooted species tree T ∗ on the same set of taxa,
∑

B

∑
i wB(ti) < XL(T, T ′), where B ranges over the

clusters of T ∗. But then there is a completion T ∗ of the gene trees in T so that XL(T ∗, T ∗) < XL(T, T ′),

contradicting our hypothesis.
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Materials and Methods
Overview

The simulation study used gene sequences that evolve down gene trees that can differ from the true species

tree due to ILS. To produce these sequence datasets, we used sequences used in previous studies and provided

to us by the authors of these studies–the 11-taxon datasets from [30], the 17-taxon datasets from [29], and

the 100-taxon datasets from [17]. We summarize the simulation protocols used in these studies here, and

direct the reader to the relevant publication for the details of how the data were generated.

In each case, a model species tree was generated (typically using a birth-death process). Then a set of gene

trees within each species tree was produced under a coalescent process, so that for each gene one individual

was sampled for each species. This produces gene trees with branch lengths that can differ topologically

from their associated species tree due to ILS. DNA sequences were then simulated down each gene tree.

For the 11-taxon and 17-taxon datasets, these simulations were done under a substitution-only model, and

for the 100-taxon datasets these simulations were done under GTR+Gamma+gap models with varying gap

lengths; thus, the 100-taxon datasets evolved with indels as well as with substitutions. Many replicates were

generated for each model condition, and each replicate consisted of true sequence alignments for each gene.

For each replicate dataset we had the true alignment as well as the true tree. We then deleted taxa

randomly, varying the number of taxa removed, from each gene sequence alignment, thus producing in-

complete gene sequence alignments. On each resultant gene sequence alignment we estimated trees using

FastTree-2 [10]; this produces a tree as well as branch support estimations. We produced a 75%-branch

support version of each estimated gene tree by contracting all edges with support below 75%.

For each replicate of each model, we thus have three types of datasets (each consisting of a collection

of gene sequence alignments and trees): the true gene sequence alignment, the binary trees estimated by

FastTree-2 on the true gene sequence alignment, and the 75%-branch support FastTree-2 trees estimated on

each true gene sequence alignment.

For each such dataset, we estimated species trees using the following techniques:

• iGTP v. 1.1. We explore all three optimization criteria (deep coalescence, duplications, duplication-

loss) available in iGTP. We ran iGTP on 75% support version of the input binary trees, although it is

not guaranteed to give meaningful outputs for non-binary gene trees.

• Phylonet v. 2.4. We explore both heuristic and exact version of Phylonet used to solve the MDC

problem on both binary and unresolved gene trees. However, the exact version can only be run on
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small datasets, and so we used it only on the 11-taxon datasets.

• Matrix Representation with Parsimony (MRP). We ran MRP heuristics on the FastTree-2 trees (both

binary and 75%-support versions), using a Python script to run a parsimony ratchet analysis using

PAUP*, with 100 iterations, followed by taking the greedy consensus of the set of trees.

• *BEAST v. 1.6.2. We ran *BEAST on the true alignments for each dataset using its default settings.

We recorded the average (over all replicates) missing branch rate and running time for each method.

When computing the missing branch rate, we compare the estimated species tree to the subtree of the true

species tree induced by those species present in at least one gene tree.

Datasets

We ran our experiments on datasets that evolve with ILS. We used 11-taxon datasets, each with 10 genes,

obtained from [30]. We also used 17-taxon datasets with 8 genes each, used previously in [29]. Finally, we

used 100-taxon datasets with 25 genes each, used in [17].

Results
Missing branch rates

We begin by discussing performance with respect to missing branch rates.

Results on 11-taxon datasets

For these datasets, we were able to run the exact version of Phylonet-MDC, and hence solve the MDC

problem exactly. As before, we ran the heuristic version of Phylonet-MDC, the three iGTP methods (for

the MDC score, duplication score, and duplication plus losses score), and MRP. We explored results with

two, three, and five missing taxa; see Figure 1.

The first observation is that *BEAST produced the most accurate species trees, for all percents of missing

taxa. The second best method varied depending on the percentage of missing taxa, with MRP on the 75%-

support trees best for 20% missing taxa, Phylonet-exact on the 75%-support trees best for 30% missing taxa,

and MRP best for 50% missing taxa. Thus, there was no clear second best method. Furthermore, although

these three methods generally gave reasonably good results, they were not always among the next most

accurate. Between the iGTP methods, iGTP-dup had the worst results, and iGTP-MDC and iGTP-duploss

were sometimes reasonably accurate. A noteworthy trend was that Phylonet-heuristic gave the worst results
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at all percents of missing taxa, whether applied to the fully resolved trees or the 75%-support trees. Finally,

using the 75%-support trees instead of the fully resolved trees improved MRP and Phylonet (both exact

and heuristic) for small numbers of missing taxa, but not when the number of missing taxa was large. Also,

using the 75%-support trees did not help the other methods.

Results on 17-taxon datasets

Performance on 17-taxon datasets with 8 genes showed similar results, see Figure 2. Because of the number

of taxa, we did not run Phylonet-exact. However, the results we saw here are similar to what we saw on

the 11-taxon datasets. As before, *BEAST was the most accurate, for all percents of missing taxa. The

next best methods were MRP and iGTP-MDC (on either binary or 75%-support trees), and sometimes also

iGTP-duploss on binary trees, but all had at least 7% higher missing branch rates than *BEAST. The worst

results were obtained using Phylonet-heuristic and iGTP-dup on either the binary or 75%-support trees.

Results on 100-taxon datasets

We now describe results on the 100-taxon datasets. Because of the number of taxa, we did not run *BEAST

(running long enough to reach convergence was infeasible for this experimental study), nor Phylonet-exact.

However, these data allow us to compare the other methods, Phylonet-heuristic, the three variants of iGTP,

and MRP, on both binary and 75%-support trees; see Figure 3.

On the estimated gene trees, MRP on the 75%-support trees gives the most accurate trees, but MRP

on binary trees comes quite close. The least accurate method is Phylonet-heuristic on binary trees, and

Phylonet-heuristic on 75%-support trees is only slightly better (and much less accurate than all the other

methods). A comparison between the iGTP methods no longer shows no reliable differences: for example,

sometimes iGTP-MDC is the best and sometimes it is the worst of the three.

Overall results

For all levels of missing data, certain trends were clearly seen. Results for all methods improved when

given more estimated gene trees rather than fewer; these trends are to be expected, and consistent with

prior studies (see, for example, [17]). In addition, we saw that for each species tree estimation method,

the missing branch rate increased with increased levels of taxon deletion, but the increase in error was

particularly large for the heuristic version of Phylonet-MDC.

The relative performance between methods showed clearly that when analyzing estimated gene trees,
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*BEAST produced the most accurate results (as indicated by the lowest missing branch rate). MRP,

especially on the 75%-support trees, typically came in second or close to second, and when Phylonet-exact

could be run, it gave results that were close to that of MRP. However, in all the experiments, Phylonet-

heuristic gave the least accurate results or tied for last. Comparisons between the iGTP methods depended

on the model condition, and no overall trends could be observed.

Using 75%-support trees had a variable effect on the different methods we explored. First, on low taxon

deletion levels, Phylonet-MDC (in either the exact or heuristic version) and MRP were improved by using the

75%-support trees, but this changed for the highest level of taxon deletion. Why this is happened is unclear,

although it could be that the branches on the estimated gene trees had low support when estimated on very

sparse taxon sets (such as would be obtained by deleting many taxa), leading to more loss of information

when using the 75%-support trees. On the other hand, the iGTP methods did not show any advantage when

used with 75%-support trees, and were often hurt.

Computational Issues

We also evaluated the running time and memory usage of the different methods we studied. Phylonet-exact

uses time that is exponential in the number of taxa, and so could only be run on the 11-taxon datasets;

however, on these datasets it completed in less than 2 seconds. The next most expensive method is *BEAST,

which must be run long enough to converge to the stationary distribution. Therefore, we only ran *BEAST

on the 11-taxon and 17-taxon datasets. On average, *BEAST finished its analyses in 15 minutes on the

11-taxon datasets and 20 minutes on the 17-taxon datasets. The remaining methods were much faster: all

finished in under a second on the 11-taxon and 17-taxon datasets, and in under a minute on the 100-taxon

datasets. Some differences in running time were evident on the 100-taxon datasets, where Phylonet-heuristic

finished in 6 seconds, MRP finished in 20 seconds, but the three iGTP methods took between 20-64 seconds.

Peak memory usage by these methods all differed, but only *BEAST used any substantial memory – about

1GB on the 17-taxon datasets.

Discussion

We begin with some observations about methods that attempt to optimize the MDC criterion. First, it is

clear that iGTP-MDC generally gives more accurate trees than Phylonet-MDC run in its heuristic mode;

however, when the exact version of Phylonet-MDC can be run, it produces more accurate trees than its

heuristic version, and also more accurate trees than iGTP-MDC. The reason for this is likely due to the
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improved MDC scores produced by using the exact version of Phylonet-MDC (which are mathematically

guaranteed), compared to the other methods. It is worth noting that the substantial reduction in topological

accuracy (and MDC scores, results not shown) by using the heuristic version instead of the exact version of

Phylonet-MDC is almost certainly a result of the fact that all the gene trees are incomplete, with randomly

deleted taxa. This greatly impairs the ability of Phylonet-MDC’s heuristic to score trees that are topologically

similar to the true tree, since all the clades in any estimated tree must be drawn from the input gene tree

clades in this case. However, the heuristic used in iGTP-MDC explicitly searches through treespace and

so is not impaired in the same way. Given that previous research [17] has shown very good trees resulting

from Phylonet-MDC’s heuristic version when the input gene trees are all complete, it seems likely that

Phylonet-MDC might give better results when the taxon deletion is not random, or when at least some of

the gene trees are based upon complete taxon sets. Thus, although this study showed poor accuracy for

Phylonet-MDC’s heuristic, this trend may not hold under other circumstances, including those that might

better represent systematic practice. Future work will investigate this possibility.

We also note that contracting low support branches in estimated gene trees typically (but not always)

benefited Phylonet-MDC and MRP, but not the iGTP methods. This difference is likely due to differences in

the treatment of unresolved gene trees within the iGTP, Phylonet-MDC, and MRP software. For example,

it seems likely that iGTP-MDC and Phylonet-MDC do not score proposed species trees identically when the

input gene trees are unresolved (Phylonet-MDC scores species trees with respect to optimal refinements of

unresolved gene trees [27], a guarantee that may not be true of iGTP-MDC).

Conclusions

This study establishes that there is currently no computationally feasible solution for estimating highly

accurate species trees from incomplete gene trees for large numbers of taxa. That is, only *BEAST was able

to produce highly accurate species trees; all other methods had much higher error rates. Therefore, for small

enough numbers of taxa so that *BEAST can be run properly without huge running times, very accurate

species trees can be computed. Although this study did not investigate the feasibility of running *BEAST

on larger datasets, other studies with Bayesian methods have shown that proper analyses of datasets (even

small ones) can take weeks of analysis to reach convergence [17]. Therefore, the poor results of the other

methods on larger datasets suggests that highly accurate species tree estimations from incomplete gene trees

and alignments may be beyond what current methods can achieve.

This study also suggests some limitations to analyses based upon MDC. Unsurprisingly, we saw that

15



optimizing MDC generally gave better results than optimizing duplications or duplications and losses. We

also observed (as had been noted earlier in [17]) that optimizing the total number of duplications and losses

produced more accurate trees than optimizing duplications alone.

Finally, and perhaps most interestingly, we noted that optimizing MDC produced generally less accurate

trees than optimizing MRP. This is a very interesting result, given that MRP is agnostic about the cause of

incongruence between gene trees, and MDC explicitly addresses ILS as the cause for incongruence. However,

there is no mathematical explanation for why MRP would perform well, and so this remains only an empirical

observation.

Thus, this study showed that the standard heuristics (the parsimony ratchet as implemented in PAUP*)

for the supertree method MRP produces highly accurate species tree estimations, even though it does not

consider ILS, and can do so reasonably quickly, even on large datasets. These observations, combined with

the observation that none of the methods we studied (other than *BEAST) that explicitly take into account

events such as ILS or duplication and loss produced trees as accurate as MRP, suggest that optimizing

MRP may be a reasonable approach to species tree estimation for large datasets, when statistical methods

(such as *BEAST) cannot be run for computational reasons. Therefore, other supertree methods, such as

SuperFine [31–33], a new supertree method that has been shown to produce better MRP scores and more

accurate trees than standard MRP heuristics (while also being faster than standard MRP heuristics), should

also be investigated.
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Simultaneous Estimation of Multiple Sequence Alignments and Phylogenetic Trees. Syst Biol 2011,
61:90–106.

9. Stamatakis A: RAxML-NI-HPC: Maximum likelihood-based phylogenetic analyses with thousands
of taxa and mixed models. Bioinf 2006, 22:2688–2690.

10. Price MN, Dehal PS, Arkin AP: FastTree 2 – Approximately maximum-likelihood trees for large
alignments. PLoS ONE 2010, 5(3):e9490. doi:10.1371/journal.pone.0009490.

11. Zwickl D: Genetic algorithm approaches for the phylogenetic analysis of large biological sequence
datasets under the maximum likelihood criterion. PhD thesis, The University of Texas at Austin 2006.

12. Guindon S, Dufayard J, Lefort V, Anisimova M, Hordijk W, Gascuel O: New Algorithms and Methods to
Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol
2010, 59(3):307–21.

13. Liu K, Linder C, Warnow T: RAxML and FastTree: comparing two methods for large-scale maximum
likelihood phylogeny estimation. PLoS-ONE 2011, 6(11):e27731.

14. Maddison WP: Gene trees in species trees. Syst Biol 1997, 46:523–536.

15. Edwards SV: Is a new and general theory of molecular systematics emerging? Evolution 2009, 63:1–19.

16. Degnan JH, Rosenberg NA: Gene tree discordance, phylogenetic inference and the multispecies coa-
lescent. Trends Ecology Evolution 2009, 26(6).

17. Yang J, Warnow T: Fast and accurate methods for phylogenomic analyses. BMC Bioinformatics 2011,
12(4).
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Figure 1: Average missing branch rates of methods on twenty (20) 11-taxon 10-gene datasets on true
alignments (TA). Gene trees are estimated using FastTree-2 (FT), and in some cases the branches with
support less than 75% are contracted (FT-75). From top to bottom, the number of missing taxa is 2, 3, and
5.
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Figure 2: Average missing branch rates of methods on twenty (20) 17-taxon 8-gene datasets on true align-
ments (TA). Gene trees are estimated using FastTree-2 (FT), and in some cases the branches with support
less than 75% are contracted (FT-75). From top to bottom, the number of missing taxa is 1, 5, and 8.
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Figure 3: Average missing branch rates of methods on ten (10) 100-taxon 25-gene datasets on true alignments
(TA). Gene trees are estimated using FastTree-2 (FT), and in some cases the branches with support less
than 75% are contracted (FT-75). From top to bottom, the number of missing taxa is 10, 30, and 50.
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