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1 OVERVIEW with binning, we were able to run it on 100 replicates of the 11

These supplementary materials present additional detadst the ~ {@xon strongILS datasets and 100 replicates of the 17-taXayene

methods used (Section 2) and results (Section 3), and atsemr datasets. The remaining methods were all fast enough far st
some additional discussion (Section 4). on all 100 replicates of all model conditions.

Standard error: The error bars in the figures correspond to the
standard error, given b§/+/n, whereS is the standard deviation
andn is the number of datapoints.

2 METHODS

2.1 Overview 2.2 Datasets

We used previously generated datasets from two studietagbr All datasets are available online at

dataset§ from Yet al. (2011a,b) and 11-taxon.dat.asets from.C.:hung http:/Awww.cs.utexas.edu/users/phylo/datasets/ILS/.

and Ané (2011)), and evaluated several pipelines for esiig

species trees and gene trees for these datasets. We intluded 11-taxon datasetsThe 11-taxon datasets were created for the study
ways of estimating gene trees: RAXML and FastTree-2 to esim in Chung and Ané (2011), and simulated under a complex psoice
maximum likelihood trees from the sequence alignments, andnsure substantial heterogeneity between genes and aielézm
*BEAST to co-estimate gene trees and species trees. Weregplo the molecular clock. There were two types of model trees -s one
several ways of estimating species trees: BUCKy, *BEAST,RR Wwith long branches (LB) that produce low levels of ILS, ang®n
Greedy Consensus, Phylonet-MDC, MP-EST, and CA-ML. Eachwith short branches (SB) that produce high levels of ILS. \&eeh
analysis produced a set of estimated gene trees and spessies t referred to these two different model conditions as weakén®
which we could evaluate for accuracy by comparing them to thestrongILS, respectively. Here we present the text from thgep
model gene and species trees. We noted the missing brareh ramodified only to remove the references to other papers ancegu
(false negative, or FN error) and running time usage for each

method. We compared the methods and determined which sesultrext from Chung and Ané (2011):

were statistically significant using Wilcoxon signed rante$t, with

a=0.05. . _

We used 11-taxon datasets with 100 genes (100 replicates) an We generated DNA allgnments from S-taxon and 11-taxon
17-taxon datasets with up to 32 genes (also with 100 repb§at species trees. An asymmetric t.re.e topology was ch.osen axes a
The 11-taxon datasets were generated by model conditicats thaS this was proven to be more difficult to reconstruct in trespnce

. A . of gene-to-gene discordance (Kubatko and Degnan, 200%)10u
violate the molecular clock and came in two forms: datadst t taxon tree contains two copies of our 5-taxon tree (subtriée taxa
were generated under a high level of ILS (called “stronglLS” P

and datasets that were generated under a low level of IL&¢cal L t2 3.4 aTd subtr;e;w:; taxa_5, 7; 9, 12’ b?jtg with taézndl:iams
“weakILS”). The 17-taxon datasets were generated under the! group). In one of the two copies, taxa 6 and 8 were addeciero

molecular clock and had a high level of ILS; these came in twot(; .dn?terﬁt r)o;[jentlalciffecézrof thﬁ numper torf tai<a oln thetznge
forms: 8-gene and 32-gene datasets. ot internal edges LS. each species tree topology,

branch lengths were considered. One set had long interraidites

Slow methods: Pipelines that included *BEAST or BUCKy were (LB), whereas the other set had some short internal bran¢BB3.

too computationally intensive to run on all the replicatese Species tree branch lengths were measured in coalesceist asi
therefore only explored these methods on a subset of thieatgd.  obtained by dividing the number of generations by the effect
Specifically, we never ran *BEAST on 100 replicates of any slod population size. Under the coalescent model, branch lengih
condition. Instead, we ran *BEAST (binned and unbinned) 6n 2 coalescent units determine the proportion of genes thatestiee
replicates of the 11-taxon datasets with at most 50 genes2@n species tree topology and the proportion of genes that hawye a
replicates of the 17-taxon datasets with 8 genes and witreB2gy  given conflicting topology.

For BUCKy, we were able to run it on 20 replicates (unbinned) “In order to simulate multilocus data sets, 10, 50, or 100inkéd

of all model conditions tested. In addition, when we ran BYCK gene trees were generated along the species trees. We used an

(© Oxford University Press 2013. 1
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effective size of 50,000 haploid individuals in each popaoia The
numbers of generations between speciations were detedntipe
multiplying branch lengths in coalescent units by the papah
size.

“HGTsimul was used to simulate a Poisson-distributed numbe

of genomic rate change events (with a mean of three changes) o

the species tree, for genomic departure from the molecutackc
Lineage-specific rates were simulated from a gamma digtabu

with mean 1 and shape parameter 2.0. For each gene, branch

lengths obtained from Serial SimCoal were multiplied byséhe
lineage-specific rates, then further multiplied by a comrfemtor

to obtain a randomly chosen gene diameter (uniform in 0.024

and 0.037 substitutions per site). Next, gene tree branobthes
were modified in a gene-specific manner: for each individual
gene, a Poisson-distributed number of rate change evehtse(t

changes on average) were placed on the gene tree, whosehbranc

lengths were multiplied by a gamma-distributed rate (meamd
shape parameter 2.0) in between these gene-specific rateggeha
events. Finally, sequences were simulated using the JakésiC
(JC) model and no site-specific rate variation, for compiotal
feasibility.

“In summary, our simulations included important factorsath
contribute to heterogeneity among genes, such as hetegtigen
the overall rate of evolution, departure from clock-likeokition,
and topological discordance.”

17-taxon datasets:We used 17-taxon datasets that were simulated

for Yu et al. (2011a,b), and provided to us by the authors. In this
simulation, species trees were generated using the Yulaulmod
using Mesquite (Maddison and Maddison (2011)), and withltot
branch length of 800,000 generations, not counting theroupy
Two collections of gene trees were simulated in this modet: with
only 8 gene trees and one with 32 gene trees; however, tha&-ge
dataset is not a subset of the 32-gene dataset. These genevae
simulated within the species trees using the “Coalescenotaihed
Within Current Tree” module within Mesquite, with an effivet
population size ofV. = 100, 000. Then sequences were evolved

2.3 Methods

2.3.1 Gene tree estimationWe used three methods for estimating
gene trees: FastTree-2, RAXML, and *BEAST.

e FastTree-2 (v. 2.1.3 SSE3) (Prie¢ al. (2010)). We used
FastTree-2 to estimate ML gene trees from the sequence
alignments, using the following command:

Fast Tree -gtr -nt <sequenceAlignnent >
> <outputFile>

RAXML: We ran RAXML v. 7.3.1 (Stamatakis (2006)) to
estimate ML gene trees from sequence alignments. We ran 20
runs of RAXML on each of the alignments, using the following
command:

raxm HPC- PTHREADS - T 2 - m GTRGAMVA

-s <sequenceAl i gnment > - n <out put - nane>

-N 20 -p 1234.

For estimating bootstrap branch support for the RAXML-
estimated trees, we generated 400 bootstrap trees per each
gene and then drew branch support on the edges of the ML
tree by using these 400 bootstrap trees. The proportioneof th
bootstrap trees in which a particular split is found is taken

be the degree of support for that split. We then produced a
75%-branch support version of each estimated gene tree by
contracting all edges with support below 75%.

*BEAST: We ran *BEAST in its default setting to co-estimate
gene trees and species trees; details are provided belasy und
“Species Tree Estimation”.

2.3.2 Species Tree Estimation

*BEAST: We used *BEAST v. 1.6.2 (Heled and Drummond
(2010)) in default mode to co-estimate the gene trees antlespe
tree on every dataset. For a given *BEAST analysis, we dischr
the first 10% of the trees returned by the analysis, and theplsa

one (1) out of each 1000 of the remaining trees. We return the
maximum credibility species tree and gene trees from theABE

down the gene trees under the Jukes-Cantor model (withgut aroutput. On the 11-taxon datasets with 5, 10, 25, and 50 geves,

rates-across-sites), using Seg-gen (Rambaut and Grd€9y)j,
with each sequence having length 2000.

Thus, these sequences evolve under a strong molecular aelodk
there is no rate variation across sites or between diffeyenes.

Subsampling:Our 11-taxon datasets (both strongILS and weakILS)
contain 100 replicates each containing 100 genes. To deatha

ran *BEAST for 80M, 120M, 160M, and 200M MCMC iterations,
respectively. We did not run *BEAST to convergence on the 100
gene datasets. On the 17-taxon datasets, we ran *BEAST @b 20
MCMC iterations.

We were able to run *BEAST on 11-taxon datasets with up to
50 genes. We observed very high ESS values (all the ESS values
were greater than 100, and many of them were in the thousands)

impact of the number of genes on the performance of diﬁere”bxcept for 5 and 10-gene cases, where some ESS values were les

methods, we subsample different number of genes (5, 10n2%H&
genes) from our available set of 100 genes. We randomly syfiea

a particular number of genes (5, 10, 25 etc.) from a replitzdé
contains 100 genes. We generated 20 set of such subsangies fr
each replicate. For experiments analyzing 11-taxon destagieh

than 100. On 17-taxon 8 and 32-gene datasets, we obserwed ver
high ESS values (all the ESS values are greater than 100, ang m
of them were in the thousands) when we ran it for 200M iteratio
When used with binning on 11- and 17-taxon datasets, we righ 50
iterations on the supergenes and observed very high ES&svalu

up to 50 genes, we generated either 20 replicates (all froen on \\e ran *BEAST on 11-taxon 100-gene datasets with 50M

replicate alignment) or 100 replicates (from 5 differenplieate
alignments). For experiments analyzing 11-taxon datagigits100
genes, we used all 100 replicates. The 17-taxon datasetsinawo
collections - one with 8 genes, and one with 32 genes. Thexgfiar
the analyses with 17-taxon datasets, we used 20 or 100atgsiof
the datasets in each collection.

iterations; each of these analyses took around 100 hours per
replicate dataset, but produced very poor ESS values (werzdss
many parameters having less than 100 ESS). Therefore, weotid
report results for *BEAST on the 11-taxon 100-gene datasets

Additional information about the running time for *BEAST is
given below.
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BUCKy: We used BUCKYy v. 1.4.0 (Anét al,, 2007; Largeet al,, BUCKYy returns two trees: one is the population tree (refétee
2010) in default mode; thusy = 1. As noted in the paper, most as “BUCKy-pop”) and the other is the concordance tree (reter
of the experiments involving BUCKy were run with input gene to as “BUCKy-con”). BUCKy-pop is statistically consisteint the

tree distributions computed using RAXML. However, we alsedi  presence of ILS, but BUCKy-con is not.

*BEAST in Experiment 4. We used the following command: MP-EST: We used MP-EST v. 1.2 (Liet al, 2010) to estimate

the species tree from input gene trees. MP-EST requiregdoot
gene trees as input; our datasets all include outgroups,wand
root the estimated gene trees using these outgroups. MPHEST
statistically consistent in the presence of ILS, and maz@wia
pseudo-likelihood function in order to estimate the spetiee. We
ran it in its default setting with MAXROUND=1000000.

bucky -n <nunber Of Gener ati ons>
-0 <out putFil eRoot> <inputFil es>

For the analyses with distributions produced by *BEAST, @ae r
80M, 120M, 160M, 200M iterations of *BEAST for 5, 10, 25, and
50 genes, respectively, and we sampled one tree out of edéth 10
iterations; this produced 80K, 120K, 160K, and 200K treesdoh  Matrix Representation with Parsimony (MRP)MRP (Ragan
distribution for datasets with 5, 10, 25, and 50 genes, wis@ly.  (1992)) is a supertree method that we use as a consensusdmetho
We discarded the first 10% of these treesbasn-in, and used (since all the gene trees have the same set of taxa). MRP leas tw
the remaining trees as the input to BUCKy. We ran BUCKYy with steps: in the first step, it encodes each input source treenagrix
30M generations for 5- and 10-gene cases, 40M generatioB§-on over {0,1, %, with one row for each taxon in the full set of taxa,
gene cases, and 50M generations for 50-gene cases. FoxdiV-ta and with each character corresponding to one edge bipartiti
datasets, we ran 40M generations. Note therefore that weatid one source tree. These matrices are then concatenatetieogmet
test BUCKy on gene tree distributions estimated by *BEAST@  obtain a single matrix. The MRP supertree is obtained byyaira
100-gene datasets, because *BEAST was too expensive tonrun ahe character matrix using a maximum parsimony approach.
these datasets. We created MRP matrices using a custom Java program, and

We also ran BUCKy on RAxML-bootstrap trees, using 400 solved MRP heuristically using the default approach im@etad
bootstrap trees per gene. We ran 500M generations of BUCKy foin PAUP* (v. 4. 0b10) (Swofford (1996)). By default, PAUP*
5-, 10-, and 25-gene cases, and 200M generations for 50egees.  generates an initial tree through random sequence addétnting
When run with binning, we ran 500M and 50M generations of sequences one at a time in the most parsimonious positiotréey
BUCKYy on 11-taxon strongILS and weakILS datasets, respelgti  and then performs Tree Bisection and Reconnection (TBR)esiov
On 17-taxon datasets (both binned and unbinned), we ran 100Mntil it reaches a local optimum. This process is repeate@D 10
generations of BUCKYy. times, and at the end the most parsimonious tree is retuviibdn

As with *BEAST, there is no strict condition for convergence multiple trees are found with the same maximum parsimonyesco
of BUCKYy; however, an “Average SD of mean sample-wide CF” the “extended majority consensus” of those trees is returne
below 0.05 may be adequate to have high confidence about the
convergence. Samples of the standard deviation (SD) foiCthe
statistics for different BUCKYy analyses follow:

Below is the PAUP* block:
begi n paup;
set criterion=parsinony nmaxtrees=1000
i ncrease=no;
hsearch start=stepwi se addseg=random
nreps=100 swap=t br;
filter best=yes;
savetrees file =
f or mat =al t nex;
contree all/ strict=yes
treefile = <strictConsensusTreeFil e>

e 11-taxon 50-gt, RAXML trees: SD = 0.000 100.004
e 11-taxon 50-gt, *BEAST trees: SD = 0.000
e 11-taxon 25-gt, RAXML trees: SD = 0.001 400.006
e 11-taxon 25-gt, *BEAST trees: SD = 0.000
e 11-taxon 10-gt, RAXML trees: SD = 0.000 t00.007
e 11-taxon 10-gt, *BEAST trees: SD = 0.000

<treeFil e> repl ace=yes

e 11-taxon 5-gt, RAXML trees: SD = 0.000 t0 0.001
e 11-taxon 5-gt, *BEAST trees: SD = 0.000

e 17-taxon 32-gt, RAXML trees: SD = 0.000

e 11-taxon 32-gt, *BEAST trees: SD = 0.000t00.003
e 17-taxon 8-gt, RAXML trees: SD = 0.000

e 11-taxon 8-gt, *BEAST trees: SD = 0.000

The following statistics are for the binned analyses:

e 11-taxon 50-gt (10 bins): SD = 0.000
e 11-taxon 25-gt (5 bins): SD = 0.000
e 17-taxon 32-gt (8 bins): SD = 0.000

repl ace=yes;

tcontree all/ majrul ezyes strict=no
treefile = <mgjorityConsensusTreeFil e>
repl ace=yes;

contree all/ majrul esyes strict=no

| e50=yes

treefile = <greedyConsensusTreeFil e>
repl ace=yes;

| og stop;

quit; end

Phylonet: We use the Phylonet v. 2.4 (Tham al,, 2008) to solve
MDC heuristically or exactly, depending on the dataset. sk
the 11-taxon datasets, we use the version that is guarataseti/e
MDC optimally, and for the 17-taxon datasets we use the bgari
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version. The input to Phylonet in each case is a set of gees tre
restricted to the branches with bootstrap support at |ea%t (i.e.,
with all low-support branches contracted). The version loflénet
we used on these partially resolved gene tree estimatessstite
following problem: Given a set of (partially resolved) uated gene
trees7 = {ti,t2,...,tr} (not necessarily on the same set of
taxa), find binary refinements$ for eacht;, and species tre€, so
that the MDC score of” with respect to7* = {t1,t3,...,t5}

is minimum among all such set6* and species tre€g. Thus,
Phylonet solves a constrained version of MDC, taking boapst
support into consideration. See ¥tial. (2011a,b) for more details
and the proof of correctness. See also Bayzid and Warnow2j§201
for the proof that Phylonet handles missing taxa correctly.

Greedy ConsensusWe ran the greedy consensus technique (also

called the extended majority consensus) using PAUP* v. 00b
The greedy consensus begins by computing the majority osose
(the tree whose edge-induced taxon bipartitions are tihag@ppear

in more than half of the input trees), and then adds comgatibl
bipartitions, one at a time, in an order reflecting the fremyewvith
which each bipartition appears.

Below is the PAUP* block:
begi n paup;
set autocl ose = yes warntree = no
war nr eset no notifybeep = no
nmonitor = yes taxlabels = full;
set criterion par si nony;
set increase = auto;
gettrees file <nexusFil e> al | bl ocks
warntree = no unrooted = yes;
contree all / strict = no
majrule = yes | e50 = yes
treefile <gr eedyConsensusTr eeFi | e>;
end;

= yes

Combined Analyses using Maximum Likelihood (CA-MO)his

method concatenates the alignments on all genes into orex-sup

alignment, and then estimates a tree from the super-alighuséng

maximum likelihood, treating the alignment as unpartiéidnWe

used RAXML for this analysis, using the following command:
raxm HPC- PTHREADS -T 2 - m GTRGAMVA

-s <sequence> -n <output-name> -N 10

-p 1234.

2.4 Running time

*BEAST running time: We tested three 11-taxon datasets with
100 genes without using binning and using 50M iterationss¢h

e Unbinned analyses

e 11-taxon stronglILS 50-gt, 200M iterations: 57 hours
e 11-taxon strongILS 25-gt 160M iterations: 20 hours
e 17-taxon 32-gt, 200M iterations: 35 hours

e Binned analyses (5 genes per hin)

e 11-taxon stronglLS 100-gt with 20 bins with 50M iterations:
10 hours using 4 threads

e 11-taxon stronglLS 50-gt with 10 bins (5 genes in each bin),
50M iterations: 6.4 hours

e 11-taxon 25-gt strongILS with 5 bins, 50M iterations: 3.1
hours

e 17-taxon 32-gt with 8 bins, 50M: 5.6 hours

BUCKYy running time: We performed several BUCKy analyses for
all three model conditions. These analyses showed thattiréng
time was determined by the the type of input distributiond an
whether it was from one of the two 11-taxon model conditions o
from the 17-taxon model condition; however, 11-taxon sjibf
and 11-taxon weakILS analyses took the same amount of time.

Results on unbinned analyses with RAXML gene tree distiobst

11-taxon 100-gt, RAXML trees, 200M generations: 2.2 hours
11-taxon 50-gt, RAXML trees, 200M generations: 2.1 hours
11-taxon 25-gt, RAXML trees, 500M generations: 3.5 hours
11-taxon 10-gt, RAXML trees, 500M generations: 2.36 hours
11-taxon 5-gt, RAXML trees, 500M generations: 1.75 hours
17-taxon 8-gt, RAXML trees, 100M generations: 40 mins
17-taxon 32-gt, RAXML trees, 100M generations: 2.07 hours

Results on unbinned analyses with *BEAST gene tree digtdbs:

11-taxon 50-gt, *BEAST trees, 50M generations: 21 mins
11-taxon 25-gt, *BEAST trees, 40M generations: 11 mins
11-taxon 10-gt, *BEAST trees, 30M generations: 7 mins
11-taxon 5-gt, *BEAST trees, 30M generations: 3 mins
17-taxon 32-gt, *BEAST trees, 40M generations: 15 mins
17-taxon 8-gt, *BEAST trees, 40M generations: 6 mins

Note the difference in running time between *BEAST and RAXML
distributions, indicating that BUCKy converges with feWwdCMC

analyses ranged from 80 to 150 hours. Based on the ESS valuaggrations when run with *BEAST distributions than when mith

none of these came close to convergence; hence, the runmieg t
here are suggestive of lower bounds for time needed to usASBE
However, these datasets were run on Condor, and so runmnieg ti
are approximate.

The remaining analyses were on at most 50 genes, or useddinni
to analyze 100 genes (and so had only 20 supergenes). Edgéisina
is of one dataset only, and was done on a dedicated 64-bitingach
with 32173 MB memory.

RAXML bootstrap distributions! However, *BEAST takes much
more time to run, so the total running time when based on *BEAS
is much longer.

Running time for binned analyses:

e 11-taxon 25-gt (5 bins), RAXML trees, 500M generations: 1.1
hours
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e 11-taxon 50-gt (10 bins), RAXML trees, 500M generations:
1.75 hours

e 17-taxon 32-gt (8 bins), RAXML trees, 100M generations: 13
mins

RAXML bootstrapping: We generated 400 bootstrap replicates per
gene; each analysis took under 2 minutes on each gene sequenc
alignment, whether it was a single gene or a supergene. figpeci
results are:

e 11-taxon dataset strongILS and weakILS: less than 1 minute
per gene

e 17-taxon dataset: less than 2 minutes per gene

e 11-taxon 50-gt, 10 bins (5 genes in each): less than 2 minutes
per supergene

e 11-taxon 25-gt, 5 bins (5 genes in each): less than 2 minutes
per supergene

e 11-taxon 100-gt, 20 bins (5 genes in each): less than 2 n@nute
per supergene
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3 ADDITIONAL RESULTS
3.1 Experiment 1: Evaluating fast species tree
estimation methods on 100 replicate datasets

CA-ML showed substantial improvements over the next best
method (typically MP-EST, but in one case MRP) in Experiment
1 for the 11-taxon datasets, with biggest improvements @n th
11-taxon weakILS datasets. CA-ML was also more accurate tha
the next best method on the 17-taxon datasets, but thedtiffes
were smaller. As can be seen, the improvements were statigti
significant for all conditions, withp < 0.003 on the 11-taxon
datasets (both strongILS and weaklILS), and< 0.043 on the
17-taxon datasets.

e 11-taxon strongILS 5-gt: (CA-ML vs. MRP)i < 10~¢

e 11-taxon strongILS 10-gt: (CA-ML vs. MP-EST):< 103
e 11-taxon strongILS 25-gt: (CA-ML vs. MP-EST):= 10
e 11-taxon strongILS 50-gt: (CA-ML vs. MP-EST):< 10~°
e 11-taxon strongILS 100-gt: (CA-ML vs. MP-EST):= 0.003
e 17-taxon 8-gt: (CA-ML vs. MP-EST)» = 0.013

e 17-taxon 32-gt: (CA-ML vs. MP-ESTy = 0.043

Thus, the improvement of CA-ML over the next best method is
statistically significant in all these cases.
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3.2 Experiment 2: Evaluating species tree estimation
methods on 20 replicate datasets

*BEAST vs. fast methods on RAXML gene treé8e compared
*BEAST to fast methods on RAXML gene trees on 20 replicates
of all model conditions. With the exception of the 17-taxa 3
gene case, the differences were statistically significantl1-taxon
strongILS datasets, *BEAST is significantly better than fast
methods ¢ < 10~*). The difference is also significant on 17-taxon
8-gene datasetg{values are within the range 0.620.03). On 11-
taxon weakILS datasets, *BEAST is significantly better ttranfast
methods on 5 and 10 gengs < 10~2), but not significantly better
on 25 or 50 genep(> 0.1).

CA-ML vs. *BEAST: As *BEAST is computationally intensive to
run (tens to hundreds of hours for each analysis for someelzia
we compared CA-ML to *BEAST on only 20 replicate datasets of
each model condition. The relative performance betweertwioe
methods was mixed, with CA-ML being more accurate in some
cases and less accurate in others. However, the only staiist
significant differences were for two conditions: 11-taxdidgene
strongILS and 11-taxon 5-gene weakILS, in which CA-ML was
more accurate than *BEASH (= 0.05 andp = 0.03, respectively).

BUCKY-con vs. BUCKy-pop: The difference is statistically
significant only on the 11-taxon stronglLS 25-gempe=£ 0.003)
and 50-geney(= 0.035) cases.
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3.3 Experiment 3: Evaluating gene tree estimation
error

Here we discuss the accuracy of gene trees estimated by maxim
likelihood (by RAXML or FastTree-2) and *BEAST. Results for
the 11-taxon stronglLS conditions are provided in Figurendl a

Table 1; results for the 11-taxon weakILS conditions areigiexd in
Figure 2 and Table 2. In Table 3 we present results for theat@rt

datasets; the figure for these data are in the main document¢. N

that *BEAST gives a dramatic improvement in gene tree estona

accuracy, and that the smallest improvement is on the lahtax

datasets. However, even on these data, the improvementeiasat
50%.

Table 1. Average missing branch rates (over 20 replicates) of gezestr

estimated by different methods on 11-taxon strongILS @t¢as'BEAST
could not be run on 100-gene datasets. Experiment 3.

Table 2. Average missing branch rates (over 20 replicates) of gezestr

estimated by different methods on 11-taxon weakILS degagetperiment
3.

Error Error Error Error
5genes 10genes 25genes 50 genes

Method

*BEAST  0.095 0.039 0.033 0.033
FastTree  0.314 0.299 0.338 0.334
RAxML  0.311 0.283 0.321 0.319

0.5

04 - q

&

<

‘Z" 03 F - B 5 genes
[ W 10 genes
) O 25 genes
& W 50 genes
0:3' 02 - O 100 genes
<

*BEAST FastTree RAxXML

Fig. 1. Gene tree estimation error rates on 11-taxon strondlS datasets.
Average and standard error bars (over 20 replicates) of *BEARAXML,
and FastTree-2. Experiment 3.

Method Error Error Error Error Error
5genes 10genes 25genes 50genes 100 genes
*BEAST 0.224 0.162 0.155 0.141 -
FastTree  0.430 0.440 0.407 0.418 0.424
RAXML  0.405 0.424 0.401 0.399 0.413

Table 3. Average missing branch rates over 20 replicates of gens tree

estimated by different methods on 17-taxon datasets. Ewnpat 3.

Method Error Error

8 genes 32 genes
*BEAST 0.195 0.176
FastTree 0.399 0.400
RAXML  0.393 0.389

0.5

Average FN rate

*BEAST FastTree RAxXML

Fig. 2. Gene tree estimation error rates on 11-taxon weaklLSlatasets.
Average and standard error bars (over 20 replicates) of *BEARAXML,
and FastTree-2. Experiment 3.
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3.4 Experiment 4: Evaluating summary methods on 04
gene trees estimated by *BEAST 035 B seast 1
" . =] —con
The figures below show results of using summary methods oa gen 03+ L EEEE;;M 8
trees estimated using *BEAST, and compares them to the especi 025 - = Phylo-xac |
. . . e - MRP
trees estimated by *BEAST. There were no statistically ificgmt | cc

differences in the accuracy of trees estimated using *BEAST

compared to using summary methods on gene trees estimatgd us 0.15 -

Average FN rate
o
(5]
T
Il

*BEAST (p > 0.2 for all pairwise comparisons). o1k |
0.05 B
0.5 0
8—genes 32—-genes
B “BEAST
04+ [l BUCKy-con i
B BUCKy-pop . o o . .
E MeEsT | Fig. 5. Results for methods with input gene tree distributionsnestid
03l B e ] using *BEAST on 17-taxon model conditions; n=20 for eachadabint.
GC

Experiment 4.

Average FN rate

5—genes 10—-genes 25-genes 50—genes

Fig. 3. Results for summary methods on gene trees estimated using
*BEAST on 11-taxon weakILS model conditions with up to 50 ggmn=20
for each data point. Experiment 4.
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Fig. 4. Results for summary methods with input gene tree distdimgti
estimated using *BEAST on 11-taxon weakILS model condgievith up
to 50 genes; n=20 for each data point. Every method retumgle tree on
the 25- and 50-gene datasets. Experiment 4.
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Table 4. Average missing branch rates for methods (unbinned andet)nn

.5 Experiment 5: Evaluating the im f naiv
35 periment 5 aluating the impact of naive on 11-taxon strongILS 25, 50 and 100-gene cases; n = 100 Hachntains

binning on fast methods - 100 replicate datasets 5 genes. BUCKYy (unbinned) was not run on 100 replicates. xeat 5.

We divide Experiment 5 into two parts: a comparison on 100
replicate datasets of the fast methods (all methods othem th Method Error Error Error
*BEAST and BUCKy), and then a comparison on 20 replicate 25 genes 50genes 100 genes
datasets of all methods. See .thIS subsection for resultsasi f CAML 0.053 0.031 0.018
methods, and the next subsection for results on all methdae BUCKy-con (binned) 0.070 0.045 0.034
that the impact of binning on the fast methods is best evedliatthe BUCKy-pop (binned) 0.070 0.045 0.034
experiments on 100 replicate datasets, rather than on trepiate MP-EST 0.110 0.073 0.039
datasets, especially in terms of statistical significance. MP-EST (binned) 0.088 0.057 0.033

Because CA-ML is an unpartitioned analysis, it is not impdct Phylonet-exact 0.126 0.089 0.054
by binning. Binning can impact all the other methods, but we Phylonet-exact (binned) ~ 0.096 0.041 0.024
do not have results for the unbinned Bayesian methods (*BEAS MRP 0.115 0.091 0.050
and BUCKYy) on these 100 replicate datasets because thepare t MRP (binned) 0.105 0.053 0.038
computationally expensive. GC 0.114 0.096 0.054

These experiments show the following trends: GC (binned) 0.103 0.054 0.034

e MP-EST, MRP, Phylonet, and Greedy Consensus each

Imprqyed for all numbers of genes on the 11-taxon Stron_g_lLSTabIe 5. Evaluating the statistical significance of using binning fast
condition and on the 25-gene 11-taxon weakiLS Condlt'on'methods, when analyzing 100 replicate 11-taxon stronglatasets. We
The improvements on the 11-taxon weakILS conditions withshowp-values for the statistical significance of a differenceneen binned
25 genes were small (at most 0.5%), but this is because abind unbinned analyses. Each bin has 5 genes. Experiment 5.
unbinned methods were highly accurate to begin with — all
had error between 0.4% and 1.4%. The improvements on Method p.va|ues p.va|ues p.va|ues
the 11-taxon strongILS conditions ranged from 1% to 4.8% 25genes 50 genes 100 gerles
(Phylonet on 50 genes), but differences were generallydess
the 100-gene case (ranging from 0.6% to 3%) and 25-gene case MP-EST — 0.021 0'0_557 O'%ﬁl
- Phylonet 0.002 < 10 <10
(ranging from 1.1% for Greedy to 3% for Phylonet) than on MRP 0177 < 10-* 0.079
the 50-gene case (ranging from 1.6% for MP-EST to 4.2% for GC 0.156 <10-* 0'007
Greedy). . .
e Phylonet became 0.5% more accurate on the 17-taxon
condition, but the change was not statistically signifidant- Table 6. Average FN rates for methods (unbinned and binned) on ldntax
0.25). All other methods (MP-EST, Greedy, and MRP) becameweakILS 25-gene case; n = 100. Each bin contains 5 genes. dVetiun
less accurate on the 17-taxon conditions, but the differémc  *BEAST or BUCKy on 100 replicates. Experiment 5.
accuracy was small (at most 1%) and the changes were not

statistically significant for any of these methods. | Method Error|
e On the 1l-taxon models, the differences for Phylonet's CA-ML 0.000
performance were statistically significant for every caasd MP-EST 0.014
tended to be larger than for the other methods. They were MP-EST (binned) 0.003
statistically significant for Greedy Consensus only on the 1 Phylonet 0.008
taxon strongILS datasets with 50 and 100 genes (and hence not Phylonet (binned) 0.000
for 25 genes on either strongILS or weakILS). The resultewer MRP 0.008
statistically significant for MP-EST on the 25-gene datsiset MRP (binned) 0.004
(both strongILS and weakILS), but not for the other cases. GC 0.009
Finally, the results were statistically significant for MRRly GC (binned) 0.004

on the 50-gene strongILS datasets.

Thus, methods differed in their response to binning, andTable 7. Evaluating the impact of binning on fast methods on 100
binning on the 11-taxon datasets generally improved acgura replicate 11-taxon weakILS datasets with 25 genes. We ghwalues for
and sometimes substantially, while generally reducinguaamy  the statistical significance of a difference between binaad unbinned
(but only slightly) on the 17-taxon datasets. However, théyo analyses. Each bin has 5 genes. Experiment 5.
statistically significant differences were improvememtgccuracy.

Phylonet in particular benefited from binning, improvingervon [ Method  p-valueg
the 17-taxon datasets, and improvement was greatest is wéisee MP-EST _ 0.002
there were enough genes (at least 50), and accuracy beforiadpi Phylonet  0.016
was not too great. MRP 0.188
7. GC 0.109

10



Supplementary Materials to “Naive Binning...”

Table 8. Average FN rates for methods (unbinned and binned) on lahtax 0.03
32-gene case; n = 100. Each bin contains 4 genes. We did nanhinned
BUCKYy on 100 replicates. Experiment 5. 0.025 b
© B Unbinned
g 0.02 - W Binned (5 bins) i
[ Method Error | h
.
CA-ML 0.136 g 0015
BUCKy-con (binned) 0.154 5,0
BUCKy-pop (binned) 0.154 < 7
MP-EST 0.149 0.005
MP-EST (binned) 0.159 0
Phylonet 0.176 = = 5 o, 3}
X = 9] 5] -4 &)
Phylonet (binned) 0.171 P = § =
MRP 0.146 3 S 2
MRP (binned) 0.153 £
GC 0.151
GC (binned) 0.161

Fig. 7. Results of the binning experiment on 11-taxon 25-genweakILS
datasets. Each bin contains 5 genes. Average and standard error bars
shown; n=100 for all datapoints. CA-ML returns the true toeethese data
Experiment 5.

Table 9. Evaluating the impact of binning for fast methods (binned vs
unbinned) on 100 replicates of 17-taxon 32-gene dataseshtep-values
for the statistical significance of binned versus unbinnealyses. Each bin
has 4 genes. Experiment 5.

[ Method  p-valueg

MP-EST  0.221
Phylonet  0.258

MRP 0.273
GC 0.245
0.25 ; ‘
B Unbinned
02+ B Binned (8 bins) i

Average FN rate

MRP
GC

—
P
<
©)

MP-EST
Phylo—heu

BUCKy-con
BUCKy-pop

Fig. 6. Results of binning experiment on 17-taxon datasets ith 32
genes. We show the performance (average and standard error bars) of
methods other than BUCKy on unbinned genes and *BEAST. Eath b
contains 4 genes; n=100 for all datapoints. Experiment 5.
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3.6 Experiment 5: Evaluating the impact of naive

Table 11. Evaluating the impact of binning on all methods, applied @ 2
replicates of the 11-taxon stronglLS datasets. We shawlues. We were

binning on all methods - 20 replicate datasets

We now show results for naive binning on all methods (inalgdi
BUCKYy and *BEAST), but restricted to 20 replicate datas@s.
these datasets, we were able to run the Bayesian methodsKiBUC
and *BEAST), and so can explore the impact of binning on these
methods. We do not show results for unbinned *BEAST on the
100-gene datasets, because these were too computatiotetigive
to run, but do show results obtained using *BEAST with binned
datasets.

These results show the following trends:

e *BEAST has unchanged accuracy under all conditions where
it can run in the unbinned and binned settings.

e On the 17-taxon datasets, no changes were statistically
significant.

e BUCKy-con improved for the 11-taxon stronglLS datasets
(ranging from 3% on the 100-gene case to 7.5% on the 50-
gene case) and by 2.5% on the 11-taxon weakILS 25-gene

not able to run *BEAST (unbinned) on 100-gene datasets. fixpat 5.

Method p-values p-values p-values
for 25 genes for 50 genes for 100 gernes
*BEAST 0.500 0.500 -
BUCKYy-con 0.018 0.005 0.089
BUCKy-pop 0.441 0.227 0.062
MP-EST 0.011 <1074 0.363
Phylonet 0.113 0.179 0.500
MRP 0.307 <107? 0.291
GC 0.230 <107* 0.290

case. The Changes were Statistica”y Signiﬁcant for 2@gen Table 12. Average FN rates for methods (unbinned and binned) on lahtax

and 50-genes, but not for 100-genes, on the strongILS datase 32-9ene case; n = 20. Each bin contains 4 genes. Experiment 5.

e With the exception of Phylonet (which was 100% accurate
both with and without binning) all methods improved on the
11-taxon weakILS datasets as a result of binning, and the
improvements ranged from 0.7% (for MRP) to 3.1% (for
BUCKYy-pop). However, only BUCKy-pop had a statistically
significant improvementy(= 0.031).

These results are similar to those observed on the 10Czagpli
case, except that with only 20 replicates, we do not detect
statistically significant changes.

Table 10. Average FN rates for methods (unbinned and binned) on ldntax
strongILS 25, 50 and 100-gene cases; n = 20. We do not shoiisrésu

unbinned *BEAST on 100 genes, because it was not run to cgemee. MRP 0.104
Each bin contains 5 genes. Experiment 5. MRP (binned) 0.114
GC 0.104
Method Error Error Error GC (binned) 0.121
25 genes 50genes 100 genes
CA-ML 0.062 0.025 0
*BEAST 0.100 0.038 -
*BEAST (binned) 0.100 0.038 0.012
BUCKYy-con 0.143 0.125 0.056
BUCKYy-con (binned) 0.094 0.050 0.025
BUCKy-pop 0.088 0.088 0.056

[ Method Error |
CA-ML 0.100
*BEAST 0.082
*BEAST (binned)  0.082
BUCKy-con 0.107

BUCKy-con (binned) 0.111

BUCKYy-pop

BUCKYy-pop (binned) 0.114

MP-EST

MP-EST (binned) 0.125

Phylonet

Phylonet (binned) 0.131

0.119

0.114

0.139

Table 13. Evaluating the impact of binning on species tree estimation

BUCKy-pop (binned) 0.094 0.050 0.025 methods on 20 replicates of the 11-taxon weakILS dataséts28i genes.
MP-EST 0.156 0.163 0.044 We showp-values for methods (binned vs. unbinned methods). Eachdsin
MP-EST (binned) 0.106 0.056 0.031 5 genes. Experiment 5.
Phylonet-exact 0.106 0.094 0.025
Phylonet-exact (binned)  0.077 0.069 0.01¢ | Method p-values|
MRP 0.143 0.163 0.056
MRP (binned) 0138 0056  0.043 gﬂgg:ggg 8'82?
GC 0.150 0.160 0.063 MP-EST O. 250
GC (binned) 0.125 0.056 0.044 Phylonet O..500
MRP 0.500
GC 0.250
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Table 14. Average FN rates for methods (unbinned and binned) on ldntax
weakILS 25-gene case; n = 20. Each bin contains 5 genes. iExgqar5.

Table 15. p-values for methods (binned vs. unbinned) on 20 replicates o
17-taxon 32-gene dataset. Each bin has 4 genes. Experiment 5

| Method Error |
CA-ML 0.000
*BEAST 0.000
*BEAST (binned) 0.000
BUCKY-con 0.025
BUCKYy-con (binned) 0.00d
BUCKYy-pop 0.031
BUCKy-pop (binned) 0.00d
MP-EST 0.019
MP-EST (binned) 0.00¢
Phylonet 0.000
Phylonet (binned) 0.000
MRP 0.013
MRP (binned) 0.006
GC 0.019
GC (binned) 0.006

| Method p-valueg

*BEAST 0.500
BUCKy-con  0.444
BUCKy-pop  0.311
MP-EST 0.191
Phylonet 0.212
MRP 0.053
GC 0.082

0.07

0.06 -

0.05 F Bl Unbinned

0.04
0.03

Average FN rate

0.02
0.01

Fig. 8. Results of the binning experiment evaluating all métods on
20 replicates of the 11-taxon 25-gene weakILS datasetfkesults are
shown (average and standard error bars) for bins with 5 geaels. CA-
ML, *BEAST (binned and unbinned), BUCKy-con (binned), BUZ#8op
(binned), and Phylonet-MDC (binned and unbinned) all rethe true tree

on these data.

—
5
<
©)

M Binned (5 bins)

*BEAST
MP-EST

Phylo—exact

BUCKy-con
BUCKy-pop

MRP

GC

Average FN rate

0.2

0.15

0.1

0.05

CA-ML

Hl Unbinned
M Binned (8 bins) |

*BEAST
MP-EST
MRP

GC

BUCKy-con
BYCKy-pop

Fig. 9. Results of binning experiment of 17-taxon datasetsith 32 genes.
Average and standard error bars shown for all methods. Badtab 4 genes;
n=20 for all datapoints. No changes are statistically $icamt (0 = 0.053
for MRP,p = 0.082 for GC, andp > 0.2 for all other methods). Experiment

5.

Average FN rate

0.25

0.2

0.15

0.1

0.05

=)
3
<
o

B Unbinned
B Binned (5 bins)

MRP
GC

*BEAST
MP-EST

BUCKy-con
BUCKy-pop
Phylo—exact

Fig. 10. Results of the binning experiment on 11-taxon 25-ge
strongILS datasets.Each bin contains 5 genes. Average and standard error
bars shown; n=20 for all datapoints. Experiment 5.
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4 ADDITIONAL DISCUSSION first, and many conditions in which MrBayes was only slighéys

4.1 Previous studies comparing concatenation to accurate than BEST and BUCKY.

coalescent-based estimation of species trees Larget et al. (2010): This paper presents a comparison of

One of the interesting results in this paper is that conedtemusing ~ concatenated analysis using a consensus tree output byyksBa
maximum likelihood produced better results than the surgmar (Huelsenbeck and Ronquist, 2001) to the BUCKy-pop and BUCKyY
coalescent-based methods, and was often more accurate thgAn trees, on three model conditions with rooted species taad
*BEAST. Since this result seems to run counter to the litemat 5 taxa. Every model species tree has the strong moleculek,clo
about coalescent-based methods, we discuss this in somie det ~ and sequences with 500 bp evolve under the Jukes-Cantorl.mode
While many papers have used simulations to evaluate ceaiesc They report only the percentage of times that each methavees
based methods, most of these papers only compared coalescefhe true tree exactly. Two of the three models are in the ahoma
based methods to each other, rather than to concatenatiars, T Zone, and one of these is in the “too greedy” zone. The arsalysi
to the best of our knowledge, only Largett al. (2010); Liuet al. ~ shows that BUCKy-pop generally had the best results of atleth
(2010); Edwardset al. (2007); DeGiorgio and Degnan (2010); methods. Results on the easiest of the three model consigioow
Kubatko and Degnan (2007); Leaché and Rannala (2011)dHele@ll methods had roughly the same accuracy (though BUCKy-pop
and Drummond (2010) present results of simulation studies t does better at 10 and 30 genes than the other methods), and all
compare concatenated analysis (either based on a Bayesi@an o methods converged to the true species tree at 100 genestsResu

maximum likelihood method) to coalescent-based methods. Wthe two trees in the anomaly zone distinctly show the impmueset
discuss each of these in turn. of BUCKy-pop over the other methods.

DeGiorgio and Degnan (2010)This study introduces Supermatrix Liu et al. (2010): This paper presents the MP-EST method, and
Rooted Triplets (SMRT), a coalescent-based method that i§eports results for several simulation studies in which E&F is
statistically consistent under ILS when sequences evatdenthe ~ compared to other coalescent-based method. However, they a
two-state CFN molecular clock model. They compare SMRT toProvide a simulation study comparing MP-EST and concaienat
maximum likelihood in an extensive simulation study withadeb ~ The model tree here is a 5-taxon species tree in the anomasy zo
trees having at most 6 taxa (most have only 4 or 5 taxa). Almos@nd sequences of length 500 evolve under the Jukes-Canti#l mo
all of the simulations were performed under a strong mokecul With the strong molecular clock. They report the frequendy o
clock. In their simulations, concatenation was generdilyt not  returning the correct tree. Their study suggests that therethods
always, outperformed by SMRT. However, the relative penfance ~ have roughly the same accuracy at the smallest number ofgene
was clearly impacted by the amount of ILS (as determined hythey studied (100), but that MP-EST converges to the cotreet
parameter settings), with concatenation performing ad yeel ~ at 2500 genes, while Bayesian analysis (MrBayes) conveogie
better) when ILS was very low. The relative performance was a Wrong tree at 500 genes.

impacted by the number of genes., so that under some modets WheEdwardset al.(2007): This paper introduced the coalescent-based

SMRT outperformed concatenation for large numbers of genes, aihod BEST, which co-estimates gene trees and species tree

concatenation outperfor.med SMRT for. small numbers of 9enestay provide a simulation study comparing BEST to MrBayesr

They also explored the impact of violating the molecularckln 30 genes that evolve within an 8-taxon model species trapicdee

the simulation, but inferring under the clock; this studpwhd that evolution on these genes is under the Jukes-Cantor modekand

concatenatiqn was Igss impacteq by the mo.del vio'IationmART. strong molecular clock and had 500 bp. For this analysig, it
The most interesting part of this analysis is that it shovired the that the species tree had 98% of the posterior probabilitetithe

relative performance of concatenation using maximum ilikeld BEST analysis, but that MrBayes converged to the wrong sdbe
and SMRT depended on several conditions, including Whetheﬁumberof genes increased.

sequences evolved under a strong molecular clock, the anabun

ILS, and the number of genes. Heled and Drummond (2010):This paper introduced *BEAST,

a method for co-estimating gene trees and species trees; The
compared *BEAST to BEST (another coalescent-based co-
estimation method) and also to BEAST, a Bayesian concabenat

Leaché and Rannala (2011)This paper reports on a very extensive
comparison several coalescent-based methods (STEM, Bl DIy

BEST) .to two goncatenatipn met_hods (one us_ing MrnyeS anqnethod for estimating species trees. They performed a atinal
One using maximum. parsimony |mplementeq in PAUP¥) on 5'study using 7-taxon species trees with 4 genes that evoleddru
taxon model species t_rees. Sequence evolution on each gee Whe Jukes-Cantor model and a strong molecular clock. T

under Jukes-Cantor with a strong molecular clock, and predu alignments each had 1600 bp. They evaluated performande wit
sequences of length 1000 bp. They also report the percenfage oqpect 1o the how often the true species tree appeared Bbthe
time the true tree is returned by the given analysis. credible set of tree topologies. They observed that *BEAS&T the

One focus of their study was evaluating the impact of the the,.; results, with BEST not too far below - but that BEAST hgd b
model tree topology (balanced vs. unbalanced) on the velati far the worst accuracy.

performance of methods; they observed that BEST generadlyte

highest accuracy on the asymmetric model species treesla@&  Discussion: These studies clearly indicate that coalescent-based

generally had the best accuracy on the symmetric model especi methods can be more likely to produce the true species tege th

trees. There were, however, some model conditions (reflpcti concatenation under some circumstances. However, aé stadies

the amount of ILS) in which MrBayes was either first or tied for shared some features: small numbers of taxa, generallg larg
numbers of genes, and all genes evolving under a strong olatec
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clock. Some of these studies also primarily focused on modelve explored the use of naive binning were either cases where
species trees in the anomaly zone. These features aretiikelgke  concatenation was more accurate than binning (the 11-taxon
it easier for coalescent-based methods (possibly especiads that  datasets with not too many genes) or where the differencecest
combine estimated gene trees) to perform better than camettidn-  concatenation and coalescent-based methods was very @heall
based methods that do not take ILS into account. For examplel7-taxon datasets, and the 11-taxon datasets with sufficimany
DeGiorgio and Degnan (2010) observed that the presenceroiieys  genes so that all methods recovered the true tree). Therdfds
molecular clock favors SMRT, a coalescent-based methotl thgoossible that the naive binning technique we used is helpiig
assumes the molecular clock; since many other coalesesetlb because it creates a hybrid method that falls somewhereebatw
methods assume the strong molecular clock, this would stidgjgat concatenation and coalescent-based estimation, anddrei®as
simulations under a strong molecular clock may be biaseehiarf  accuracy that falls between these two.
of the coalescent-based methods. Also, summary methagls (i. In other words — does this naive binning technique help kezau
methods that combine estimated gene trees) are impactekeby tit brings the coalescent-based method closer to concatanair
accuracy of the estimated gene trees, and the simulatiaitzoTs does it help for some other reasons as well (such as addyebsin
in these studies may have all had sufficient sequence lemgth a vulnerability to poor signal gene trees)? Understandimgréasons
rates of evolution (relative to the number of taxa) to previdirly that naive binning helps, and the conditions under whictelps,
accurate gene trees. Finally, most of these papers (thootghllh requires additional study.
focused on accuracy on large numbers of genes, and thesresult
in DeGiorgio and Degnan (2010) show that the relative amyura 4.3 Closing comments
concatenation and coalescent-based methods can chargéhwvit
number of genes (with concatenation sometimes being as good
better on small numbers of genes, but coalescent-baseddseth
being better than concatenation on larger numbers of genes)
Taken as a whole, these studies do show that coalescemt-basg
methods can be more accurate than concatenation. Howkesg t
studies primarily explored performance only for very smaiinbers
of taxa, large numbers of genes, high amounts of ILS, and
strong molecular clock, while also demonstrating thatehaedel
conditions can impact the relative accuracy of concatenatind
coalescent-based methods. Like these studies, our stadge®s on
performance under high amounts of ILS (the 11-taxon stidBgl
and 17-taxon conditions both have high amounts of ILS), ard w
also use sequences that evolved under the Jukes-Cantod. mode
However, there are several key difference between theskestu
and our study. First, we explore performance on small nusber
genes (at most 100) rather than on large numbers of genesnGec REFERENCES
our conditions produce estimated gene trees that are digneo&  ane, C., Larget, B., Baum, D. A, Smith, S. D., and Rokas, 2007). Bayesian
that accurate as a result of inadequate sequence lengthwend estimation of concordance among gene trééal Biol Evol, 24, 412-426.
conjecture that the other studies had more accurate gesetiran Bayzid, M. S. and Warnow, T. (2012). Estimating qptimal spetrees from incomplete
our study. Third, the 11-taxon model conditions do not egoly . 9°N® trees under deep coalescedc€omput. Biol 19(6) 591-60S. .

! Chung, Y. and Ang, C. (2011). Comparing two Bayesian mettiodgene tree/species
sequences under a strong molecular clock. Fourth, we usaxbh- tree reconstruction: A simulation with incomplete lineagmting and horizontal
and 17-taxon datasets instead of smaller datasets. gene transferSyst Bio) 60(3), 261-275.

These differences may be sufficient to exp|ain the diﬁerentDeGiOI’giO,M.and Degnan, J. H. (2010). Fast and consistgimation of species trees
conclusions between this study and the others, but adeltion _USind supermatrixrooted tiipledol Biol Evol, 27(3), 552-569.

h will b ded d d the i f th | dEdwards, S. V., Liu, L., and Pearl, D. K. (2007). High-redinio species trees without
research wi € needed to understand the impact of theselmo concatenationProceedings of the National Academy of Scient&g(14), 5936—

We close with a basic question about phylogenetic estimatio
suggested by this study. Given that summary methods arectagba
by error in the estimated gene trees (resulting from inadequ
hylogenetic signal in the sequence alignments), whateisphimal
inning strategy? More generally, what is the best tradeetiveen
data quantity (number of estimated gene trees) and quatitu¢acy
of estimated gene trees) for summary methods? Understandin
Fne trade-off between data quantity and quality for eachrsam
method will help inform binning strategies (e.g., how tokptbe
size of the bins), even if these strategies are statistitabed. This
topic is subtle and statistically complex, and is only begig to be
studied, but see Huargg al. (2010) for further discussion.

conditions on the relative accuracy of concatenation aatescent- 5941.
based estimation. Finally, we note that the performanderan Heled, J. and Drummond, A. J. (2010). Bayesian inferencepetiss trees from
used in our study is different from that used in these othatiss; multilocus dataMol Biol Evol, 27, 570-580.

. . . Huang, H., He, Q., Kubatko, L., and Knowles, L. L. (2010). Bms of error inherent
they explored the percentage of the datasets in which tbep ecies in species-tree estimation: impact of mutational and cualet effects on accuracy

tree was rec_overeq b_y each method, Wh“_e we report_ed _thagaever and implications for choosing among different methoBgst Bio) 5%(5), 573-583.
False Negative (missing branch) rate. While these critagaequal  Huelsenbeck, J. and Ronquist, R. (2001). MrBayes: Bayésfarence of phylogeny.
for very small trees (4-taxon unrooted trees or 3-taxonewttees), Bioinformatics 17, 754-755.

they are not identical for Iarger trees, and it is pOSSibﬂ thlative Kubatko, L. S. and Degnan, J. H. (2007). Incqns:lstency ofqifgnetic estimates from
concatenated data under coalescef®yest Bio) 56, 17.

performance between two methods could Change dependlrfgpon tLarget, B., Kotha, S. K., Dewey, C. N., and Ang, C. (2010).@4y: Gene tree/species

choice of criterion. tree reconciliation with the Bayesian concordance anayBioinf, 26(22), 2910—
2911.
Leaché, A. D. and Rannala, B. (2011). The accuracy of spé@e estimation under
4.2 Limitations on Binning simulation: a comparison of method3yst Bio] 60(2), 126-137.

. . . . L . Liu, L., Yu, L., and Edwards, S. V. (2010). A maximum pseudalihood approach
One of the findings of this study is that naive binning is helpf for estimating species trees under the coalescent madiéC Evolutinary Biology
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