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1 OVERVIEW
These supplementary materials present additional detailsabout the
methods used (Section 2) and results (Section 3), and also present
some additional discussion (Section 4).

2 METHODS

2.1 Overview
We used previously generated datasets from two studies (17-taxon
datasets from Yuet al. (2011a,b) and 11-taxon datasets from Chung
and Ané (2011)), and evaluated several pipelines for estimating
species trees and gene trees for these datasets. We includedthree
ways of estimating gene trees: RAxML and FastTree-2 to estimate
maximum likelihood trees from the sequence alignments, and
*BEAST to co-estimate gene trees and species trees. We explored
several ways of estimating species trees: BUCKy, *BEAST, MRP,
Greedy Consensus, Phylonet-MDC, MP-EST, and CA-ML. Each
analysis produced a set of estimated gene trees and species trees,
which we could evaluate for accuracy by comparing them to the
model gene and species trees. We noted the missing branch rate
(false negative, or FN error) and running time usage for each
method. We compared the methods and determined which results
were statistically significant using Wilcoxon signed rank T-test, with
α = 0.05.

We used 11-taxon datasets with 100 genes (100 replicates) and
17-taxon datasets with up to 32 genes (also with 100 replicates).
The 11-taxon datasets were generated by model conditions that
violate the molecular clock and came in two forms: datasets that
were generated under a high level of ILS (called “strongILS”)
and datasets that were generated under a low level of ILS (called
“weakILS”). The 17-taxon datasets were generated under the
molecular clock and had a high level of ILS; these came in two
forms: 8-gene and 32-gene datasets.

Slow methods:Pipelines that included *BEAST or BUCKy were
too computationally intensive to run on all the replicates;we
therefore only explored these methods on a subset of the replicates.
Specifically, we never ran *BEAST on 100 replicates of any model
condition. Instead, we ran *BEAST (binned and unbinned) on 20
replicates of the 11-taxon datasets with at most 50 genes, and 20
replicates of the 17-taxon datasets with 8 genes and with 32 genes.
For BUCKy, we were able to run it on 20 replicates (unbinned)
of all model conditions tested. In addition, when we ran BUCKy

with binning, we were able to run it on 100 replicates of the 11-
taxon strongILS datasets and 100 replicates of the 17-taxon32-gene
datasets. The remaining methods were all fast enough for us to run
on all 100 replicates of all model conditions.

Standard error: The error bars in the figures correspond to the
standard error, given byS/

√
n, whereS is the standard deviation

andn is the number of datapoints.

2.2 Datasets
All datasets are available online at
http://www.cs.utexas.edu/users/phylo/datasets/ILS/.

11-taxon datasets:The 11-taxon datasets were created for the study
in Chung and Ané (2011), and simulated under a complex process to
ensure substantial heterogeneity between genes and to deviate from
the molecular clock. There were two types of model trees – ones
with long branches (LB) that produce low levels of ILS, and ones
with short branches (SB) that produce high levels of ILS. We have
referred to these two different model conditions as weakILSand
strongILS, respectively. Here we present the text from the paper,
modified only to remove the references to other papers and figures.

Text from Chung and Ané (2011):

“We generated DNA alignments from 5-taxon and 11-taxon
species trees. An asymmetric tree topology was chosen on 5 taxa,
as this was proven to be more difficult to reconstruct in the presence
of gene-to-gene discordance (Kubatko and Degnan, 2007). Our 11-
taxon tree contains two copies of our 5-taxon tree (subtree with taxa
1, 2, 3, 4 and subtree with taxa 5, 7, 9, 10, both with taxon 11 asan
outgroup). In one of the two copies, taxa 6 and 8 were added in order
to detect potential effects of the number of taxa on the estimation
of internal edges CFs. For each species tree topology, two sets of
branch lengths were considered. One set had long internal branches
(LB), whereas the other set had some short internal branches(SB).
Species tree branch lengths were measured in coalescent units, as
obtained by dividing the number of generations by the effective
population size. Under the coalescent model, branch lengths in
coalescent units determine the proportion of genes that share the
species tree topology and the proportion of genes that have any
given conflicting topology.

“In order to simulate multilocus data sets, 10, 50, or 100 unlinked
gene trees were generated along the species trees. We used an
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effective size of 50,000 haploid individuals in each population. The
numbers of generations between speciations were determined by
multiplying branch lengths in coalescent units by the population
size.

“HGTsimul was used to simulate a Poisson-distributed number
of genomic rate change events (with a mean of three changes) on
the species tree, for genomic departure from the molecular clock.
Lineage-specific rates were simulated from a gamma distribution
with mean 1 and shape parameter 2.0. For each gene, branch
lengths obtained from Serial SimCoal were multiplied by these
lineage-specific rates, then further multiplied by a commonfactor
to obtain a randomly chosen gene diameter (uniform in 0.024
and 0.037 substitutions per site). Next, gene tree branch lengths
were modified in a gene-specific manner: for each individual
gene, a Poisson-distributed number of rate change events (three
changes on average) were placed on the gene tree, whose branch
lengths were multiplied by a gamma-distributed rate (mean 1and
shape parameter 2.0) in between these gene-specific rate change
events. Finally, sequences were simulated using the JukesCantor
(JC) model and no site-specific rate variation, for computational
feasibility.

“In summary, our simulations included important factors that
contribute to heterogeneity among genes, such as heterogeneity in
the overall rate of evolution, departure from clock-like evolution,
and topological discordance.”

17-taxon datasets:We used 17-taxon datasets that were simulated
for Yu et al. (2011a,b), and provided to us by the authors. In this
simulation, species trees were generated using the Yule module
using Mesquite (Maddison and Maddison (2011)), and with total
branch length of 800,000 generations, not counting the outgroup.
Two collections of gene trees were simulated in this model: one with
only 8 gene trees and one with 32 gene trees; however, the 8-gene
dataset is not a subset of the 32-gene dataset. These gene trees were
simulated within the species trees using the “Coalescence Contained
Within Current Tree” module within Mesquite, with an effective
population size ofNe = 100, 000. Then sequences were evolved
down the gene trees under the Jukes-Cantor model (without any
rates-across-sites), using Seq-gen (Rambaut and Grassly (1997)),
with each sequence having length 2000.

Thus, these sequences evolve under a strong molecular clock, and
there is no rate variation across sites or between differentgenes.

Subsampling:Our 11-taxon datasets (both strongILS and weakILS)
contain 100 replicates each containing 100 genes. To evaluate the
impact of the number of genes on the performance of different
methods, we subsample different number of genes (5, 10, 25, and 50
genes) from our available set of 100 genes. We randomly subsample
a particular number of genes (5, 10, 25 etc.) from a replicatethat
contains 100 genes. We generated 20 set of such subsamples from
each replicate. For experiments analyzing 11-taxon datasets with
up to 50 genes, we generated either 20 replicates (all from one
replicate alignment) or 100 replicates (from 5 different replicate
alignments). For experiments analyzing 11-taxon datasetswith 100
genes, we used all 100 replicates. The 17-taxon datasets came in two
collections - one with 8 genes, and one with 32 genes. Therefore, for
the analyses with 17-taxon datasets, we used 20 or 100 replicates of
the datasets in each collection.

2.3 Methods
2.3.1 Gene tree estimationWe used three methods for estimating
gene trees: FastTree-2, RAxML, and *BEAST.

• FastTree-2 (v. 2.1.3 SSE3) (Priceet al. (2010)). We used
FastTree-2 to estimate ML gene trees from the sequence
alignments, using the following command:
FastTree -gtr -nt <sequenceAlignment>
> <outputFile>

• RAxML: We ran RAxML v. 7.3.1 (Stamatakis (2006)) to
estimate ML gene trees from sequence alignments. We ran 20
runs of RAxML on each of the alignments, using the following
command:
raxmlHPC-PTHREADS -T 2 -m GTRGAMMA
-s <sequenceAlignment> -n <output-name>
-N 20 -p 1234.
For estimating bootstrap branch support for the RAxML-
estimated trees, we generated 400 bootstrap trees per each
gene and then drew branch support on the edges of the ML
tree by using these 400 bootstrap trees. The proportion of the
bootstrap trees in which a particular split is found is takento
be the degree of support for that split. We then produced a
75%-branch support version of each estimated gene tree by
contracting all edges with support below 75%.

• *BEAST: We ran *BEAST in its default setting to co-estimate
gene trees and species trees; details are provided below under
“Species Tree Estimation”.

2.3.2 Species Tree Estimation

*BEAST: We used *BEAST v. 1.6.2 (Heled and Drummond
(2010)) in default mode to co-estimate the gene trees and species
tree on every dataset. For a given *BEAST analysis, we discarded
the first 10% of the trees returned by the analysis, and then sampled
one (1) out of each 1000 of the remaining trees. We return the
maximum credibility species tree and gene trees from the *BEAST
output. On the 11-taxon datasets with 5, 10, 25, and 50 genes,we
ran *BEAST for 80M, 120M, 160M, and 200M MCMC iterations,
respectively. We did not run *BEAST to convergence on the 100
gene datasets. On the 17-taxon datasets, we ran *BEAST for 200M
MCMC iterations.

We were able to run *BEAST on 11-taxon datasets with up to
50 genes. We observed very high ESS values (all the ESS values
were greater than 100, and many of them were in the thousands)
except for 5 and 10-gene cases, where some ESS values were less
than 100. On 17-taxon 8 and 32-gene datasets, we observed very
high ESS values (all the ESS values are greater than 100, and many
of them were in the thousands) when we ran it for 200M iterations.
When used with binning on 11- and 17-taxon datasets, we ran 50M
iterations on the supergenes and observed very high ESS values.

We ran *BEAST on 11-taxon 100-gene datasets with 50M
iterations; each of these analyses took around 100 hours per
replicate dataset, but produced very poor ESS values (we observed
many parameters having less than 100 ESS). Therefore, we didnot
report results for *BEAST on the 11-taxon 100-gene datasets.

Additional information about the running time for *BEAST is
given below.
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BUCKy: We used BUCKy v. 1.4.0 (Anéet al., 2007; Largetet al.,
2010) in default mode; thus,α = 1. As noted in the paper, most
of the experiments involving BUCKy were run with input gene
tree distributions computed using RAxML. However, we also used
*BEAST in Experiment 4. We used the following command:

bucky -n <numberOfGenerations>
-o <outputFileRoot> <inputFiles>

For the analyses with distributions produced by *BEAST, we ran
80M, 120M, 160M, 200M iterations of *BEAST for 5, 10, 25, and
50 genes, respectively, and we sampled one tree out of each 1000
iterations; this produced 80K, 120K, 160K, and 200K trees ineach
distribution for datasets with 5, 10, 25, and 50 genes, respectively.
We discarded the first 10% of these trees asburn-in, and used
the remaining trees as the input to BUCKy. We ran BUCKy with
30M generations for 5- and 10-gene cases, 40M generations on25-
gene cases, and 50M generations for 50-gene cases. For 17-taxon
datasets, we ran 40M generations. Note therefore that we didnot
test BUCKy on gene tree distributions estimated by *BEAST onthe
100-gene datasets, because *BEAST was too expensive to run on
these datasets.

We also ran BUCKy on RAxML-bootstrap trees, using 400
bootstrap trees per gene. We ran 500M generations of BUCKy for
5-, 10-, and 25-gene cases, and 200M generations for 50-genecases.
When run with binning, we ran 500M and 50M generations of
BUCKy on 11-taxon strongILS and weakILS datasets, respectively.
On 17-taxon datasets (both binned and unbinned), we ran 100M
generations of BUCKy.

As with *BEAST, there is no strict condition for convergence
of BUCKy; however, an “Average SD of mean sample-wide CF”
below 0.05 may be adequate to have high confidence about the
convergence. Samples of the standard deviation (SD) for theCF
statistics for different BUCKy analyses follow:

• 11-taxon 50-gt, RAxML trees: SD = 0.000 to∼ 0.004

• 11-taxon 50-gt, *BEAST trees: SD = 0.000

• 11-taxon 25-gt, RAxML trees: SD = 0.001 to∼ 0.006

• 11-taxon 25-gt, *BEAST trees: SD = 0.000

• 11-taxon 10-gt, RAxML trees: SD = 0.000 to∼ 0.007

• 11-taxon 10-gt, *BEAST trees: SD = 0.000

• 11-taxon 5-gt, RAxML trees: SD = 0.000 to∼ 0.001

• 11-taxon 5-gt, *BEAST trees: SD = 0.000

• 17-taxon 32-gt, RAxML trees: SD = 0.000

• 11-taxon 32-gt, *BEAST trees: SD = 0.000 to∼ 0.003

• 17-taxon 8-gt, RAxML trees: SD = 0.000

• 11-taxon 8-gt, *BEAST trees: SD = 0.000

The following statistics are for the binned analyses:

• 11-taxon 50-gt (10 bins): SD = 0.000

• 11-taxon 25-gt (5 bins): SD = 0.000

• 17-taxon 32-gt (8 bins): SD = 0.000

BUCKy returns two trees: one is the population tree (referred to
as “BUCKy-pop”) and the other is the concordance tree (referred
to as “BUCKy-con”). BUCKy-pop is statistically consistentin the
presence of ILS, but BUCKy-con is not.

MP-EST: We used MP-EST v. 1.2 (Liuet al., 2010) to estimate
the species tree from input gene trees. MP-EST requires rooted
gene trees as input; our datasets all include outgroups, andwe
root the estimated gene trees using these outgroups. MP-ESTis
statistically consistent in the presence of ILS, and maximizes a
pseudo-likelihood function in order to estimate the species tree. We
ran it in its default setting with MAXROUND=1000000.

Matrix Representation with Parsimony (MRP):MRP (Ragan
(1992)) is a supertree method that we use as a consensus method
(since all the gene trees have the same set of taxa). MRP has two
steps: in the first step, it encodes each input source tree as amatrix
over {0,1, ?}, with one row for each taxon in the full set of taxa,
and with each character corresponding to one edge bipartition in
one source tree. These matrices are then concatenated together to
obtain a single matrix. The MRP supertree is obtained by analyzing
the character matrix using a maximum parsimony approach.

We created MRP matrices using a custom Java program, and
solved MRP heuristically using the default approach implemented
in PAUP* (v. 4. 0b10) (Swofford (1996)). By default, PAUP*
generates an initial tree through random sequence addition(adding
sequences one at a time in the most parsimonious position in atree)
and then performs Tree Bisection and Reconnection (TBR) moves
until it reaches a local optimum. This process is repeated 1000
times, and at the end the most parsimonious tree is returned.When
multiple trees are found with the same maximum parsimony score,
the “extended majority consensus” of those trees is returned.

Below is the PAUP* block:
begin paup;
set criterion=parsimony maxtrees=1000
increase=no;
hsearch start=stepwise addseq=random
nreps=100 swap=tbr;
filter best=yes;
savetrees file = <treeFile> replace=yes
format=altnex;
contree all/ strict=yes
treefile = <strictConsensusTreeFile>
replace=yes;
tcontree all/ majrule=yes strict=no
treefile = <majorityConsensusTreeFile>
replace=yes;
contree all/ majrule=yes strict=no
le50=yes
treefile = <greedyConsensusTreeFile>
replace=yes;
log stop;
quit; end;

Phylonet: We use the Phylonet v. 2.4 (Thanet al., 2008) to solve
MDC heuristically or exactly, depending on the dataset size. For
the 11-taxon datasets, we use the version that is guaranteedto solve
MDC optimally, and for the 17-taxon datasets we use the heuristic
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version. The input to Phylonet in each case is a set of gene trees
restricted to the branches with bootstrap support at least 75% (i.e.,
with all low-support branches contracted). The version of Phylonet
we used on these partially resolved gene tree estimates solves the
following problem: Given a set of (partially resolved) unrooted gene
treesT = {t1, t2, . . . , tk} (not necessarily on the same set of
taxa), find binary refinementst∗i for eachti, and species treeT , so
that the MDC score ofT with respect toT ∗

= {t∗1, t∗2, . . . , t∗k}
is minimum among all such setsT ∗ and species treesT . Thus,
Phylonet solves a constrained version of MDC, taking bootstrap
support into consideration. See Yuet al. (2011a,b) for more details
and the proof of correctness. See also Bayzid and Warnow (2012)
for the proof that Phylonet handles missing taxa correctly.

Greedy Consensus:We ran the greedy consensus technique (also
called the extended majority consensus) using PAUP* v. 4.0b10.
The greedy consensus begins by computing the majority consensus
(the tree whose edge-induced taxon bipartitions are those that appear
in more than half of the input trees), and then adds compatible
bipartitions, one at a time, in an order reflecting the frequency with
which each bipartition appears.

Below is the PAUP* block:
begin paup;
set autoclose = yes warntree = no
warnreset = no notifybeep = no
monitor = yes taxlabels = full;
set criterion = parsimony;
set increase = auto;
gettrees file = <nexusFile> allblocks = yes
warntree = no unrooted = yes;
contree all / strict = no
majrule = yes le50 = yes
treefile = <greedyConsensusTreeFile>;
end;

Combined Analyses using Maximum Likelihood (CA-ML):This
method concatenates the alignments on all genes into one super-
alignment, and then estimates a tree from the super-alignment using
maximum likelihood, treating the alignment as unpartitioned. We
used RAxML for this analysis, using the following command:
raxmlHPC-PTHREADS -T 2 -m GTRGAMMA

-s <sequence> -n <output-name> -N 10
-p 1234.

2.4 Running time
*BEAST running time: We tested three 11-taxon datasets with
100 genes without using binning and using 50M iterations; these
analyses ranged from 80 to 150 hours. Based on the ESS values,
none of these came close to convergence; hence, the running times
here are suggestive of lower bounds for time needed to use *BEAST.
However, these datasets were run on Condor, and so running times
are approximate.

The remaining analyses were on at most 50 genes, or used binning
to analyze 100 genes (and so had only 20 supergenes). Each analysis
is of one dataset only, and was done on a dedicated 64-bit machine
with 32173 MB memory.

• Unbinned analyses

• 11-taxon strongILS 50-gt, 200M iterations: 57 hours

• 11-taxon strongILS 25-gt 160M iterations: 20 hours

• 17-taxon 32-gt, 200M iterations: 35 hours

• Binned analyses (5 genes per bin)

• 11-taxon strongILS 100-gt with 20 bins with 50M iterations:
10 hours using 4 threads

• 11-taxon strongILS 50-gt with 10 bins (5 genes in each bin),
50M iterations: 6.4 hours

• 11-taxon 25-gt strongILS with 5 bins, 50M iterations: 3.1
hours

• 17-taxon 32-gt with 8 bins, 50M: 5.6 hours

BUCKy running time: We performed several BUCKy analyses for
all three model conditions. These analyses showed that the running
time was determined by the the type of input distribution, and
whether it was from one of the two 11-taxon model conditions or
from the 17-taxon model condition; however, 11-taxon strongILS
and 11-taxon weakILS analyses took the same amount of time.

Results on unbinned analyses with RAxML gene tree distributions:

• 11-taxon 100-gt, RAxML trees, 200M generations: 2.2 hours

• 11-taxon 50-gt, RAxML trees, 200M generations: 2.1 hours

• 11-taxon 25-gt, RAxML trees, 500M generations: 3.5 hours

• 11-taxon 10-gt, RAxML trees, 500M generations: 2.36 hours

• 11-taxon 5-gt, RAxML trees, 500M generations: 1.75 hours

• 17-taxon 8-gt, RAxML trees, 100M generations: 40 mins

• 17-taxon 32-gt, RAxML trees, 100M generations: 2.07 hours

Results on unbinned analyses with *BEAST gene tree distributions:

• 11-taxon 50-gt, *BEAST trees, 50M generations: 21 mins

• 11-taxon 25-gt, *BEAST trees, 40M generations: 11 mins

• 11-taxon 10-gt, *BEAST trees, 30M generations: 7 mins

• 11-taxon 5-gt, *BEAST trees, 30M generations: 3 mins

• 17-taxon 32-gt, *BEAST trees, 40M generations: 15 mins

• 17-taxon 8-gt, *BEAST trees, 40M generations: 6 mins

Note the difference in running time between *BEAST and RAxML
distributions, indicating that BUCKy converges with fewerMCMC
iterations when run with *BEAST distributions than when runwith
RAxML bootstrap distributions! However, *BEAST takes much
more time to run, so the total running time when based on *BEAST
is much longer.

Running time for binned analyses:

• 11-taxon 25-gt (5 bins), RAxML trees, 500M generations: 1.1
hours
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• 11-taxon 50-gt (10 bins), RAxML trees, 500M generations:
1.75 hours

• 17-taxon 32-gt (8 bins), RAxML trees, 100M generations: 13
mins

RAxML bootstrapping:We generated 400 bootstrap replicates per
gene; each analysis took under 2 minutes on each gene sequence
alignment, whether it was a single gene or a supergene. Specific
results are:

• 11-taxon dataset strongILS and weakILS: less than 1 minute
per gene

• 17-taxon dataset: less than 2 minutes per gene

• 11-taxon 50-gt, 10 bins (5 genes in each): less than 2 minutes
per supergene

• 11-taxon 25-gt, 5 bins (5 genes in each): less than 2 minutes
per supergene

• 11-taxon 100-gt, 20 bins (5 genes in each): less than 2 minutes
per supergene
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3 ADDITIONAL RESULTS

3.1 Experiment 1: Evaluating fast species tree
estimation methods on 100 replicate datasets

CA-ML showed substantial improvements over the next best
method (typically MP-EST, but in one case MRP) in Experiment
1 for the 11-taxon datasets, with biggest improvements on the
11-taxon weakILS datasets. CA-ML was also more accurate than
the next best method on the 17-taxon datasets, but the differences
were smaller. As can be seen, the improvements were statistically
significant for all conditions, withp < 0.003 on the 11-taxon
datasets (both strongILS and weakILS), andp ≤ 0.043 on the
17-taxon datasets.

• 11-taxon strongILS 5-gt: (CA-ML vs. MRP):p < 10
−6

• 11-taxon strongILS 10-gt: (CA-ML vs. MP-EST):p < 10
−3

• 11-taxon strongILS 25-gt: (CA-ML vs. MP-EST):p = 10
−6

• 11-taxon strongILS 50-gt: (CA-ML vs. MP-EST):p < 10
−5

• 11-taxon strongILS 100-gt: (CA-ML vs. MP-EST):p = 0.003

• 17-taxon 8-gt: (CA-ML vs. MP-EST):p = 0.013

• 17-taxon 32-gt: (CA-ML vs. MP-EST):p = 0.043

Thus, the improvement of CA-ML over the next best method is
statistically significant in all these cases.
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3.2 Experiment 2: Evaluating species tree estimation
methods on 20 replicate datasets

*BEAST vs. fast methods on RAxML gene trees:We compared
*BEAST to fast methods on RAxML gene trees on 20 replicates
of all model conditions. With the exception of the 17-taxon 32-
gene case, the differences were statistically significant.On 11-taxon
strongILS datasets, *BEAST is significantly better than thefast
methods (p < 10

−3). The difference is also significant on 17-taxon
8-gene datasets (p-values are within the range 0.02∼ 0.03). On 11-
taxon weakILS datasets, *BEAST is significantly better thanthe fast
methods on 5 and 10 genes (p < 10

−2), but not significantly better
on 25 or 50 genes (p > 0.1).

CA-ML vs. *BEAST: As *BEAST is computationally intensive to
run (tens to hundreds of hours for each analysis for some datasets),
we compared CA-ML to *BEAST on only 20 replicate datasets of
each model condition. The relative performance between thetwo
methods was mixed, with CA-ML being more accurate in some
cases and less accurate in others. However, the only statistically
significant differences were for two conditions: 11-taxon 25-gene
strongILS and 11-taxon 5-gene weakILS, in which CA-ML was
more accurate than *BEAST (p = 0.05 andp = 0.03, respectively).

BUCKY-con vs. BUCKy-pop: The difference is statistically
significant only on the 11-taxon strongILS 25-gene (p = 0.003)
and 50-gene (p = 0.035) cases.
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3.3 Experiment 3: Evaluating gene tree estimation
error

Here we discuss the accuracy of gene trees estimated by maximum
likelihood (by RAxML or FastTree-2) and *BEAST. Results for
the 11-taxon strongILS conditions are provided in Figure 1 and
Table 1; results for the 11-taxon weakILS conditions are provided in
Figure 2 and Table 2. In Table 3 we present results for the 17-taxon
datasets; the figure for these data are in the main document. Note
that *BEAST gives a dramatic improvement in gene tree estimation
accuracy, and that the smallest improvement is on the 17-taxon
datasets. However, even on these data, the improvement is atleast
50%.

Table 1. Average missing branch rates (over 20 replicates) of gene trees
estimated by different methods on 11-taxon strongILS datasets. *BEAST
could not be run on 100-gene datasets. Experiment 3.

Method Error Error Error Error Error
5 genes 10 genes 25 genes 50 genes 100 genes

*BEAST 0.224 0.162 0.155 0.141 -
FastTree 0.430 0.440 0.407 0.418 0.424
RAxML 0.405 0.424 0.401 0.399 0.413

Table 2. Average missing branch rates (over 20 replicates) of gene trees
estimated by different methods on 11-taxon weakILS datasets. Experiment
3.

Method Error Error Error Error
5 genes 10 genes 25 genes 50 genes

*BEAST 0.095 0.039 0.033 0.033
FastTree 0.314 0.299 0.338 0.334
RAxML 0.311 0.283 0.321 0.319

Table 3. Average missing branch rates over 20 replicates of gene trees
estimated by different methods on 17-taxon datasets. Experiment 3.

Method Error Error
8 genes 32 genes

*BEAST 0.195 0.176
FastTree 0.399 0.400
RAxML 0.393 0.389
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Fig. 1. Gene tree estimation error rates on 11-taxon strongILS datasets.
Average and standard error bars (over 20 replicates) of *BEAST, RAxML,
and FastTree-2. Experiment 3.
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Fig. 2. Gene tree estimation error rates on 11-taxon weakILSdatasets.
Average and standard error bars (over 20 replicates) of *BEAST, RAxML,
and FastTree-2. Experiment 3.
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3.4 Experiment 4: Evaluating summary methods on
gene trees estimated by *BEAST

The figures below show results of using summary methods on gene
trees estimated using *BEAST, and compares them to the species
trees estimated by *BEAST. There were no statistically significant
differences in the accuracy of trees estimated using *BEASTas
compared to using summary methods on gene trees estimated using
*BEAST (p > 0.2 for all pairwise comparisons).
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Fig. 3. Results for summary methods on gene trees estimated using
*BEAST on 11-taxon weakILS model conditions with up to 50 genes; n=20
for each data point. Experiment 4.
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3.5 Experiment 5: Evaluating the impact of naive
binning on fast methods - 100 replicate datasets

We divide Experiment 5 into two parts: a comparison on 100
replicate datasets of the fast methods (all methods other than
*BEAST and BUCKy), and then a comparison on 20 replicate
datasets of all methods. See this subsection for results on fast
methods, and the next subsection for results on all methods.Note
that the impact of binning on the fast methods is best evaluated in the
experiments on 100 replicate datasets, rather than on the 20replicate
datasets, especially in terms of statistical significance.

Because CA-ML is an unpartitioned analysis, it is not impacted
by binning. Binning can impact all the other methods, but we
do not have results for the unbinned Bayesian methods (*BEAST
and BUCKy) on these 100 replicate datasets because they are too
computationally expensive.

These experiments show the following trends:

• MP-EST, MRP, Phylonet, and Greedy Consensus each
improved for all numbers of genes on the 11-taxon strongILS
condition and on the 25-gene 11-taxon weakILS condition.
The improvements on the 11-taxon weakILS conditions with
25 genes were small (at most 0.5%), but this is because all
unbinned methods were highly accurate to begin with – all
had error between 0.4% and 1.4%. The improvements on
the 11-taxon strongILS conditions ranged from 1% to 4.8%
(Phylonet on 50 genes), but differences were generally lesson
the 100-gene case (ranging from 0.6% to 3%) and 25-gene case
(ranging from 1.1% for Greedy to 3% for Phylonet) than on
the 50-gene case (ranging from 1.6% for MP-EST to 4.2% for
Greedy).

• Phylonet became 0.5% more accurate on the 17-taxon
condition, but the change was not statistically significant(p >
0.25). All other methods (MP-EST, Greedy, and MRP) became
less accurate on the 17-taxon conditions, but the difference in
accuracy was small (at most 1%) and the changes were not
statistically significant for any of these methods.

• On the 11-taxon models, the differences for Phylonet’s
performance were statistically significant for every case,and
tended to be larger than for the other methods. They were
statistically significant for Greedy Consensus only on the 11-
taxon strongILS datasets with 50 and 100 genes (and hence not
for 25 genes on either strongILS or weakILS). The results were
statistically significant for MP-EST on the 25-gene datasets
(both strongILS and weakILS), but not for the other cases.
Finally, the results were statistically significant for MRPonly
on the 50-gene strongILS datasets.

Thus, methods differed in their response to binning, and
binning on the 11-taxon datasets generally improved accuracy
and sometimes substantially, while generally reducing accuracy
(but only slightly) on the 17-taxon datasets. However, the only
statistically significant differences were improvements in accuracy.
Phylonet in particular benefited from binning, improving even on
the 17-taxon datasets, and improvement was greatest in cases where
there were enough genes (at least 50), and accuracy before binning
was not too great.

7.

Table 4. Average missing branch rates for methods (unbinned and binned)
on 11-taxon strongILS 25, 50 and 100-gene cases; n = 100. Eachbin contains
5 genes. BUCKy (unbinned) was not run on 100 replicates. Experiment 5.

Method Error Error Error
25 genes 50 genes 100 genes

CA-ML 0.053 0.031 0.018
BUCKy-con (binned) 0.070 0.045 0.034
BUCKy-pop (binned) 0.070 0.045 0.034
MP-EST 0.110 0.073 0.039
MP-EST (binned) 0.088 0.057 0.033
Phylonet-exact 0.126 0.089 0.054
Phylonet-exact (binned) 0.096 0.041 0.024
MRP 0.115 0.091 0.050
MRP (binned) 0.105 0.053 0.038
GC 0.114 0.096 0.054
GC (binned) 0.103 0.054 0.034

Table 5. Evaluating the statistical significance of using binning onfast
methods, when analyzing 100 replicate 11-taxon strongILS datasets. We
showp-values for the statistical significance of a difference between binned
and unbinned analyses. Each bin has 5 genes. Experiment 5.

Method p-values p-values p-values
25 genes 50 genes 100 genes

MP-EST 0.021 0.057 0.211
Phylonet 0.002 < 10

−5 < 10
−3

MRP 0.177 < 10
−4 0.079

GC 0.156 < 10
−4 0.007

Table 6. Average FN rates for methods (unbinned and binned) on 11-taxon
weakILS 25-gene case; n = 100. Each bin contains 5 genes. We did not run
*BEAST or BUCKy on 100 replicates. Experiment 5.

Method Error

CA-ML 0.000
MP-EST 0.014
MP-EST (binned) 0.003
Phylonet 0.008
Phylonet (binned) 0.000
MRP 0.008
MRP (binned) 0.004
GC 0.009
GC (binned) 0.004

Table 7. Evaluating the impact of binning on fast methods on 100
replicate 11-taxon weakILS datasets with 25 genes. We showp-values for
the statistical significance of a difference between binnedand unbinned
analyses. Each bin has 5 genes. Experiment 5.

Method p-values

MP-EST 0.002
Phylonet 0.016
MRP 0.188
GC 0.109
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Table 8. Average FN rates for methods (unbinned and binned) on 17-taxon
32-gene case; n = 100. Each bin contains 4 genes. We did not rununbinned
BUCKy on 100 replicates. Experiment 5.

Method Error

CA-ML 0.136
BUCKy-con (binned) 0.154
BUCKy-pop (binned) 0.154
MP-EST 0.149
MP-EST (binned) 0.159
Phylonet 0.176
Phylonet (binned) 0.171
MRP 0.146
MRP (binned) 0.153
GC 0.151
GC (binned) 0.161

Table 9. Evaluating the impact of binning for fast methods (binned vs.
unbinned) on 100 replicates of 17-taxon 32-gene dataset. Weshowp-values
for the statistical significance of binned versus unbinned analyses. Each bin
has 4 genes. Experiment 5.

Method p-values

MP-EST 0.221
Phylonet 0.258
MRP 0.273
GC 0.245
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Fig. 6. Results of binning experiment on 17-taxon datasets with 32
genes. We show the performance (average and standard error bars) of
methods other than BUCKy on unbinned genes and *BEAST. Each bin
contains 4 genes; n=100 for all datapoints. Experiment 5.

  0

  0.005

  0.01

  0.015

  0.02

  0.025

  0.03

C
A

−
M

L

M
P

−
E

S
T

P
h

y
lo

−
ex

ac
t

M
R

P

G
C

A
v

er
ag

e 
F

N
 r

at
e Unbinned

Binned (5 bins)

Fig. 7. Results of the binning experiment on 11-taxon 25-gene weakILS
datasets. Each bin contains 5 genes. Average and standard error bars
shown; n=100 for all datapoints. CA-ML returns the true treeon these data
Experiment 5.

11



Bayzid and Warnow

3.6 Experiment 5: Evaluating the impact of naive
binning on all methods - 20 replicate datasets

We now show results for naive binning on all methods (including
BUCKy and *BEAST), but restricted to 20 replicate datasets.On
these datasets, we were able to run the Bayesian methods (BUCKy
and *BEAST), and so can explore the impact of binning on these
methods. We do not show results for unbinned *BEAST on the
100-gene datasets, because these were too computationallyintensive
to run, but do show results obtained using *BEAST with binned
datasets.

These results show the following trends:

• *BEAST has unchanged accuracy under all conditions where
it can run in the unbinned and binned settings.

• On the 17-taxon datasets, no changes were statistically
significant.

• BUCKy-con improved for the 11-taxon strongILS datasets
(ranging from 3% on the 100-gene case to 7.5% on the 50-
gene case) and by 2.5% on the 11-taxon weakILS 25-gene
case. The changes were statistically significant for 25-genes
and 50-genes, but not for 100-genes, on the strongILS datasets.

• With the exception of Phylonet (which was 100% accurate
both with and without binning) all methods improved on the
11-taxon weakILS datasets as a result of binning, and the
improvements ranged from 0.7% (for MRP) to 3.1% (for
BUCKy-pop). However, only BUCKy-pop had a statistically
significant improvement (p = 0.031).

These results are similar to those observed on the 100-replicate
case, except that with only 20 replicates, we do not detect
statistically significant changes.

Table 10. Average FN rates for methods (unbinned and binned) on 11-taxon
strongILS 25, 50 and 100-gene cases; n = 20. We do not show results for
unbinned *BEAST on 100 genes, because it was not run to convergence.
Each bin contains 5 genes. Experiment 5.

Method Error Error Error
25 genes 50 genes 100 genes

CA-ML 0.062 0.025 0
*BEAST 0.100 0.038 -
*BEAST (binned) 0.100 0.038 0.012
BUCKy-con 0.143 0.125 0.056
BUCKy-con (binned) 0.094 0.050 0.025
BUCKy-pop 0.088 0.088 0.056
BUCKy-pop (binned) 0.094 0.050 0.025
MP-EST 0.156 0.163 0.044
MP-EST (binned) 0.106 0.056 0.031
Phylonet-exact 0.106 0.094 0.025
Phylonet-exact (binned) 0.077 0.069 0.018
MRP 0.143 0.163 0.056
MRP (binned) 0.138 0.056 0.043
GC 0.150 0.160 0.063
GC (binned) 0.125 0.056 0.044

Table 11. Evaluating the impact of binning on all methods, applied to 20
replicates of the 11-taxon strongILS datasets. We showp-values. We were
not able to run *BEAST (unbinned) on 100-gene datasets. Experiment 5.

Method p-values p-values p-values
for 25 genes for 50 genes for 100 genes

*BEAST 0.500 0.500 -
BUCKy-con 0.018 0.005 0.089
BUCKy-pop 0.441 0.227 0.062
MP-EST 0.011 < 10

−4 0.363
Phylonet 0.113 0.179 0.500
MRP 0.307 < 10

−3 0.291
GC 0.230 < 10

−4 0.290

Table 12. Average FN rates for methods (unbinned and binned) on 17-taxon
32-gene case; n = 20. Each bin contains 4 genes. Experiment 5.

Method Error

CA-ML 0.100
*BEAST 0.082
*BEAST (binned) 0.082
BUCKy-con 0.107
BUCKy-con (binned) 0.111
BUCKy-pop 0.119
BUCKy-pop (binned) 0.114
MP-EST 0.114
MP-EST (binned) 0.125
Phylonet 0.139
Phylonet (binned) 0.132
MRP 0.104
MRP (binned) 0.114
GC 0.104
GC (binned) 0.121

Table 13. Evaluating the impact of binning on species tree estimation
methods on 20 replicates of the 11-taxon weakILS datasets with 25 genes.
We showp-values for methods (binned vs. unbinned methods). Each binhas
5 genes. Experiment 5.

Method p-values

BUCKy-con 0.063
BUCKy-pop 0.031
MP-EST 0.250
Phylonet 0.500
MRP 0.500
GC 0.250
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Table 14. Average FN rates for methods (unbinned and binned) on 11-taxon
weakILS 25-gene case; n = 20. Each bin contains 5 genes. Experiment 5.

Method Error

CA-ML 0.000
*BEAST 0.000
*BEAST (binned) 0.000
BUCKY-con 0.025
BUCKy-con (binned) 0.000
BUCKy-pop 0.031
BUCKy-pop (binned) 0.000
MP-EST 0.019
MP-EST (binned) 0.006
Phylonet 0.000
Phylonet (binned) 0.000
MRP 0.013
MRP (binned) 0.006
GC 0.019
GC (binned) 0.006

Table 15. p-values for methods (binned vs. unbinned) on 20 replicates of
17-taxon 32-gene dataset. Each bin has 4 genes. Experiment 5.

Method p-values

*BEAST 0.500
BUCKy-con 0.444
BUCKy-pop 0.311
MP-EST 0.191
Phylonet 0.212
MRP 0.053
GC 0.082

  0

  0.01

  0.02

  0.03

  0.04

  0.05

  0.06

  0.07

C
A

−
M

L

*
B

E
A

S
T

B
U

C
K

y
−

co
n

B
U

C
K

y
−

p
o

p

M
P

−
E

S
T

P
h

y
lo

−
ex

ac
t

M
R

P

G
C

A
v

er
ag

e 
F

N
 r

at
e Unbinned

Binned (5 bins)

Fig. 8. Results of the binning experiment evaluating all methods on
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shown (average and standard error bars) for bins with 5 geneseach. CA-
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4 ADDITIONAL DISCUSSION

4.1 Previous studies comparing concatenation to
coalescent-based estimation of species trees

One of the interesting results in this paper is that concatenation using
maximum likelihood produced better results than the summary
coalescent-based methods, and was often more accurate than
*BEAST. Since this result seems to run counter to the literature
about coalescent-based methods, we discuss this in some detail.

While many papers have used simulations to evaluate coalescent-
based methods, most of these papers only compared coalescent-
based methods to each other, rather than to concatenation. Thus,
to the best of our knowledge, only Largetet al. (2010); Liu et al.
(2010); Edwardset al. (2007); DeGiorgio and Degnan (2010);
Kubatko and Degnan (2007); Leaché and Rannala (2011); Heled
and Drummond (2010) present results of simulation studies that
compare concatenated analysis (either based on a Bayesian or a
maximum likelihood method) to coalescent-based methods. We
discuss each of these in turn.

DeGiorgio and Degnan (2010):This study introduces Supermatrix
Rooted Triplets (SMRT), a coalescent-based method that is
statistically consistent under ILS when sequences evolve under the
two-state CFN molecular clock model. They compare SMRT to
maximum likelihood in an extensive simulation study with model
trees having at most 6 taxa (most have only 4 or 5 taxa). Almost
all of the simulations were performed under a strong molecular
clock. In their simulations, concatenation was generally,but not
always, outperformed by SMRT. However, the relative performance
was clearly impacted by the amount of ILS (as determined by
parameter settings), with concatenation performing as well (or
better) when ILS was very low. The relative performance was also
impacted by the number of genes, so that under some models where
SMRT outperformed concatenation for large numbers of genes,
concatenation outperformed SMRT for small numbers of genes.
They also explored the impact of violating the molecular clock in
the simulation, but inferring under the clock; this study showed that
concatenation was less impacted by the model violation thanSMRT.

The most interesting part of this analysis is that it showed that the
relative performance of concatenation using maximum likelihood
and SMRT depended on several conditions, including whether
sequences evolved under a strong molecular clock, the amount of
ILS, and the number of genes.

Leaché and Rannala (2011):This paper reports on a very extensive
comparison several coalescent-based methods (STEM, BUCKy, and
BEST) to two concatenation methods (one using MrBayes and
one using maximum parsimony implemented in PAUP*) on 5-
taxon model species trees. Sequence evolution on each gene was
under Jukes-Cantor with a strong molecular clock, and produced
sequences of length 1000 bp. They also report the percentageof
time the true tree is returned by the given analysis.

One focus of their study was evaluating the impact of the the
model tree topology (balanced vs. unbalanced) on the relative
performance of methods; they observed that BEST generally had the
highest accuracy on the asymmetric model species trees and BUCKy
generally had the best accuracy on the symmetric model species
trees. There were, however, some model conditions (reflecting
the amount of ILS) in which MrBayes was either first or tied for

first, and many conditions in which MrBayes was only slightlyless
accurate than BEST and BUCKy.

Larget et al. (2010): This paper presents a comparison of
concatenated analysis using a consensus tree output by MrBayes
(Huelsenbeck and Ronquist, 2001) to the BUCKy-pop and BUCKy-
con trees, on three model conditions with rooted species trees and
5 taxa. Every model species tree has the strong molecular clock,
and sequences with 500 bp evolve under the Jukes-Cantor model.
They report only the percentage of times that each method recovers
the true tree exactly. Two of the three models are in the anomaly
zone, and one of these is in the “too greedy” zone. The analysis
shows that BUCKy-pop generally had the best results of all three
methods. Results on the easiest of the three model conditions show
all methods had roughly the same accuracy (though BUCKy-pop
does better at 10 and 30 genes than the other methods), and all
methods converged to the true species tree at 100 genes. Results on
the two trees in the anomaly zone distinctly show the improvement
of BUCKy-pop over the other methods.

Liu et al. (2010): This paper presents the MP-EST method, and
reports results for several simulation studies in which MP-EST is
compared to other coalescent-based method. However, they also
provide a simulation study comparing MP-EST and concatenation.
The model tree here is a 5-taxon species tree in the anomaly zone,
and sequences of length 500 evolve under the Jukes-Cantor model
with the strong molecular clock. They report the frequency of
returning the correct tree. Their study suggests that the two methods
have roughly the same accuracy at the smallest number of genes
they studied (100), but that MP-EST converges to the correcttree
at 2500 genes, while Bayesian analysis (MrBayes) convergesto the
wrong tree at 500 genes.

Edwardset al.(2007): This paper introduced the coalescent-based
method BEST, which co-estimates gene trees and species trees.
They provide a simulation study comparing BEST to MrBayes from
30 genes that evolve within an 8-taxon model species tree. Sequence
evolution on these genes is under the Jukes-Cantor model anda
strong molecular clock and had 500 bp. For this analysis, they report
that the species tree had 98% of the posterior probability under the
BEST analysis, but that MrBayes converged to the wrong tree as the
number of genes increased.

Heled and Drummond (2010):This paper introduced *BEAST,
a method for co-estimating gene trees and species trees. They
compared *BEAST to BEST (another coalescent-based co-
estimation method) and also to BEAST, a Bayesian concatenation
method for estimating species trees. They performed a simulation
study using 7-taxon species trees with 4 genes that evolved under
the Jukes-Cantor model and a strong molecular clock. The sequence
alignments each had 1600 bp. They evaluated performance with
respect to the how often the true species tree appeared in the95%
credible set of tree topologies. They observed that *BEAST had the
best results, with BEST not too far below - but that BEAST had by
far the worst accuracy.

Discussion: These studies clearly indicate that coalescent-based
methods can be more likely to produce the true species tree than
concatenation under some circumstances. However, all these studies
shared some features: small numbers of taxa, generally large
numbers of genes, and all genes evolving under a strong molecular
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clock. Some of these studies also primarily focused on model
species trees in the anomaly zone. These features are likelyto make
it easier for coalescent-based methods (possibly especially ones that
combine estimated gene trees) to perform better than concatenation-
based methods that do not take ILS into account. For example,
DeGiorgio and Degnan (2010) observed that the presence of a strong
molecular clock favors SMRT, a coalescent-based method that
assumes the molecular clock; since many other coalescent-based
methods assume the strong molecular clock, this would suggest that
simulations under a strong molecular clock may be biased in favor
of the coalescent-based methods. Also, summary methods (i.e.,
methods that combine estimated gene trees) are impacted by the
accuracy of the estimated gene trees, and the simulation conditions
in these studies may have all had sufficient sequence length and
rates of evolution (relative to the number of taxa) to provide fairly
accurate gene trees. Finally, most of these papers (though not all!)
focused on accuracy on large numbers of genes, and the results
in DeGiorgio and Degnan (2010) show that the relative accuracy
concatenation and coalescent-based methods can change with the
number of genes (with concatenation sometimes being as goodor
better on small numbers of genes, but coalescent-based methods
being better than concatenation on larger numbers of genes).

Taken as a whole, these studies do show that coalescent-based
methods can be more accurate than concatenation. However, these
studies primarily explored performance only for very smallnumbers
of taxa, large numbers of genes, high amounts of ILS, and a
strong molecular clock, while also demonstrating that these model
conditions can impact the relative accuracy of concatenation and
coalescent-based methods. Like these studies, our study focuses on
performance under high amounts of ILS (the 11-taxon strongILS
and 17-taxon conditions both have high amounts of ILS), and we
also use sequences that evolved under the Jukes-Cantor model.
However, there are several key difference between these studies
and our study. First, we explore performance on small numbers of
genes (at most 100) rather than on large numbers of genes. Second,
our conditions produce estimated gene trees that are generally not
that accurate as a result of inadequate sequence length, andwe
conjecture that the other studies had more accurate gene trees than
our study. Third, the 11-taxon model conditions do not evolve
sequences under a strong molecular clock. Fourth, we use 11-taxon
and 17-taxon datasets instead of smaller datasets.

These differences may be sufficient to explain the different
conclusions between this study and the others, but additional
research will be needed to understand the impact of these model
conditions on the relative accuracy of concatenation and coalescent-
based estimation. Finally, we note that the performance criterion
used in our study is different from that used in these other studies;
they explored the percentage of the datasets in which the true species
tree was recovered by each method, while we reported the average
False Negative (missing branch) rate. While these criteriaare equal
for very small trees (4-taxon unrooted trees or 3-taxon rooted trees),
they are not identical for larger trees, and it is possible that relative
performance between two methods could change depending on the
choice of criterion.

4.2 Limitations on Binning
One of the findings of this study is that naive binning is helpful
for coalescent-based methods. However, the conditions in which

we explored the use of naive binning were either cases where
concatenation was more accurate than binning (the 11-taxon
datasets with not too many genes) or where the difference between
concatenation and coalescent-based methods was very small(the
17-taxon datasets, and the 11-taxon datasets with sufficiently many
genes so that all methods recovered the true tree). Therefore, it is
possible that the naive binning technique we used is helpingonly
because it creates a hybrid method that falls somewhere between
concatenation and coalescent-based estimation, and therefore has
accuracy that falls between these two.

In other words – does this naive binning technique help because
it brings the coalescent-based method closer to concatenation, or
does it help for some other reasons as well (such as addressing the
vulnerability to poor signal gene trees)? Understanding the reasons
that naive binning helps, and the conditions under which it helps,
requires additional study.

4.3 Closing comments
We close with a basic question about phylogenetic estimation,
suggested by this study. Given that summary methods are impacted
by error in the estimated gene trees (resulting from inadequate
phylogenetic signal in the sequence alignments), what is the optimal
binning strategy? More generally, what is the best trade-off between
data quantity (number of estimated gene trees) and quality (accuracy
of estimated gene trees) for summary methods? Understanding
the trade-off between data quantity and quality for each summary
method will help inform binning strategies (e.g., how to pick the
size of the bins), even if these strategies are statistically-based. This
topic is subtle and statistically complex, and is only beginning to be
studied, but see Huanget al. (2010) for further discussion.
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