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Abstract. Let T be an edge weighted tree, let dT (u, v) be the sum of the weights
of the edges on the path from u to v in T , and let dmin and dmax be two non-
negative real numbers such that dmin ≤ dmax. Then a pairwise compatibility
graph of T for dmin and dmax is a graph G = (V, E), where each vertex u′ ∈ V
corresponds to a leaf u of T and there is an edge (u′, v′) ∈ E if and only if
dmin ≤ dT (u, v) ≤ dmax. A graph G is called a pairwise compatibility graph
(PCG) if there exists an edge weighted tree T and two non-negative real numbers
dmin and dmax such that G is a pairwise compatibility graph of T for dmin and
dmax. Kearney et al. conjectured that every graph is a PCG [3]. In this paper,
we refute the conjecture by showing that not all graphs are PCGs. We also show
that the well known tree power graphs and some of their extensions are PCGs.

1 Introduction

Let T be an edge weighted tree and let dmin and dmax be two non-negative real num-
bers such that dmin ≤ dmax. A pairwise compatibility graph of T for dmin and dmax is
a graph G = (V, E), where each vertex u′ ∈ V represents a leaf u of T and there is an
edge (u′, v′) ∈ E if and only if the distance between u and v in T lies within the range
from dmin to dmax. T is called the pairwise compatibility tree of G. We denote a pair-
wise compatibility graph of T for dmin and dmax by PCG(T, dmin, dmax). A graph
G is a pairwise compatibility graph (PCG) if there exists an edge weighted tree T and
two non-negative real numbers dmin and dmax such that G = PCG(T, dmin, dmax).
Figure 1(a) depicts an edge weighted tree T and Fig. 1(b) depicts a pairwise compati-
bility graph G of T for dmin = 4 and dmax = 7; there is an edge between a′ and b′

in G since in T the distance between a and b is six, but G does not contain the edge
(a′, c′) since in T the distance between a and c is eight, which is larger than seven. It is
quite apparent that a single edge weighted tree may have many pairwise compatibility
graphs for different values of dmin and dmax. Likewise, a single pairwise compatibility
graph may have many trees of different topologies as its pairwise compatibility trees.
For example, the graph in Fig. 1(b) is a PCG of the tree in Fig. 1(a) for dmin = 4 and
dmax = 7, and it is also a PCG of the tree in Fig. 1(c) for dmin = 5 and dmax = 6.

In the realm of pairwise compatibility graphs, two fundamental problems are the tree
construction problem and the pairwise compatibility graph recognition problem. Given
a PCG G, the tree construction problem asks to construct an edge weighted tree T ,
such that G is a pairwise compatibility graph of T for suitable dmin and dmax. The
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Fig. 1. (a) An edge weighted tree T1, (b) a pairwise compatibility graph G, and (c) an edge
weighted tree T2

pairwise compatibility graph recognition problem seeks the answer whether or not a
given graph is a PCG.

Pairwise compatibility graphs have their origin in Phylogenetics, which is a branch
of computational biology that concerns with reconstructing evolutionary relationships
among organisms [2,4]. Phylogenetic relationships are commonly represented as trees
known as the phylogenetic trees. From a problem of collecting leaf samples from large
phylogenetic trees, Kearney et al. introduced the concept of pairwise compatibility
graphs [3]. As their origin suggests, these graphs can be used in reconstruction of
evolutionary relationships. However, their most intriguing potential lies in solving the
“Clique Problem.” A clique in a graph G is a set of pairwise adjacent vertices. The
clique problem asks to determine whether a graph contains a clique of at least a given
size k. It is a well known NP-complete problem. The corresponding optimization prob-
lem, the maximum clique problem, asks to find the largest clique in a graph [1]. Kear-
ney et al. have shown that for a pairwise compatibility graph G, the clique problem is
equivalent to a “leaf sampling problem” – which is solvable in polynomial time in any
pairwise compatibility tree T of G [3].

Since their inception, pairwise compatibility graphs have raised several interesting
problems, and hitherto most of these problems have remained unsolved. Among the
others, identifying different graph classes as pairwise compatibility graphs is an im-
portant concern. Although overlapping of pairwise compatibility graphs with many
well known graph classes like chordal graphs and complete graphs is quite apparent;
slight progresses have been made on establishing concrete relationships between pair-
wise compatibility graphs and other known graph classes. Phillips has shown that ev-
ery graph of five vertices or less is a PCG [6] and Yanhaona et al. have shown that
all cycles, cycles with a single chord, and cactus graphs are PCGs [7]. Seeing the
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exponentially increasing number of possible tree topologies for large graphs, the pro-
ponents of PCGs conceived that all undirected graphs are PCGs [3]. In this paper, we
refute the conjecture by showing that not all graphs are PCGs.

Pairwise compatibility graphs have striking similarity, in their underlying concept,
with the well studied graph roots and powers. A graph G′ = (V ′, E′) is a k-root of a
graph G = (V, E) if V ′ = V and there is an edge (u, v) ∈ E if and only if the length
of the shortest path from u to v in G′ is at most k. G is called the k-power of G′ [5]. A
special case of graph power is the tree power, which requires G′ to be a tree. Tree power
graphs and their extensions (Steiner k-power graphs, phylogenetic k-power graphs, etc.)
are by definition similar to pairwise compatibility graphs. However, the exact relation-
ship of these graph classes with pairwise compatibility graphs was unknown. In this
paper, we investigate the possibility of the existence of such a relationship, and show
that tree power graphs and some of their extensions are in fact pairwise compatibility
graphs. Such a relationship may serve the purpose of not only unifying related graph
classes but also utilizing the method of tree constructions for one graph class in another.

The rest of the paper is organized as follows. Section 2 describes some of the def-
initions we have used in our paper, Section 3 shows that not all graphs are pairwise
compatibility graphs. Section 4 establishes a relationship of tree power graphs and their
extensions with pairwise compatibility graphs. Finally, Section 5 concludes our paper
with discussions.

2 Preliminaries

In this section we define some terms that we have used in this paper.
Let G = (V, E) be a simple graph with vertex set V and edge set E. The sets of

vertices and edges of G are denoted by V (G) and E(G), respectively. An edge between
two vertices u and v of G is denoted by (u, v). Two vertices u and v are adjacent and
called neighbors if (u, v) ∈ E; the edge (u, v) is then said to be incident to vertices u
and v. The degree of a vertex v in G is the number of edges incident to it. A subgraph
of a graph G = (V, E) is a graph G′ = (V ′, E′) such that V ′ ⊆ V and E′ ⊆ E;
we then write G′ ⊆ G. If G′ contains all the edges of G that join two vertices in V ′

then G′ is said to be the subgraph induced by V ′. A path Puv = w0, w1, · · · , wn is
a sequence of distinct vertices in V such that u = w0, v = wn and (wi−1, wi) ∈ E
for every 1 ≤ i ≤ n. A subpath of Puv is a subsequence Pwjwk

= wj , wj+1, ..., wk

for some 0 ≤ j < k ≤ n. A vertex x on Puv is called an internal node of Puv if
x �= u, v. G is connected if each pair of vertices of G belongs to a path, otherwise G is
disconnected. A set S of vertices in G is called an independent set of G if the vertices
in S are pairwise non-adjacent. A graph G = (V, E) is a bipartite graph if V can be
expressed as the union of two independent sets; each independent set is called a partite
set. A complete bipartite graph is a bipartite graph where two vertices are adjacent
if and only if they are in different partite sets. A cycle of G is a sequence of distinct
vertices starting and ending at the same vertex such that two vertices are adjacent if
they appear consecutively in the list.

A tree T is a connected graph with no cycle. Vertices of degree one in T are called
leaves, and the rests are called internal nodes. A tree T is weighted if each edge is
assigned a number as the weight of the edge. A subtree induced by a set of leaves of
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T is the minimal subtree of T which contains those leaves. Figure 2 illustrates a tree T
with six leaves u, v, w, x, y and z, where the edges of the subtree of T induced by u, v
and w is drawn by thick lines. We denote by Tuvw the subtree of a tree induced by three
leaves u, v and w. One can observe that Tuvw has exactly one vertex of degree 3. We
call the vertex of degree 3 in Tuvw the core of Tuvw. The vertex o is the core of Tuvw

in Fig. 2. The distance between two vertices u and v in T , denoted by dT (u, v), is the
sum of the weights of the edges on Puv . In this paper we have considered only weighted
trees. We use the convention that if an edge of a tree has no number assigned to it then
its default weight is one. A star is a tree where every leaf has a common neighbor which
we call the base of the star.

v

y

o

x
z

w

u

Fig. 2. Illustration for a leaf induced subtree

A graph G = (V, E) is called a phylogenetic k-power graph if there exists a tree T
such that each leaf of T corresponds to a vertex of G and an edge (u, v) ∈ E if and only
if dT (u, v) ≤ k, where k is a given proximity threshold. Steiner k-power graphs extend
the notion of phylogenetic k-power. For a Steiner k-power graph the corresponding tree
may have some internal nodes as well as the leaves that correspond to the vertices of
the graph. Both Steiner k-power graphs and phylogenetic k-power graphs belong to the
widely known family of graph powers. Another special case of graph powers is the tree
power graph. A graph G = (V, E) is said to have a tree power for a certain proximity
threshold k if a tree T can be constructed on V such that (u, v) ∈ E if and only if
dT (u, v) ≤ k.

3 Not All Graphs Are PCGs

In this section we show that not all graphs are pairwise compatibility graphs, as in the
following theorem.

Theorem 1. Not all graphs are pairwise compatibility graphs.

To prove the claim of Theorem 1 we need the following lemmas.

Lemma 1. Let T be an edge weighted tree, and u, v and w be three leaves of T such
that Puv is the largest path in Tuvw. Let x be a leaf of T other than u, v and w. Then,
dT (w, x) ≤ dT (u, x) or dT (w, x) ≤ dT (v, x).

Proof. Let o be the core of Tuvw. Then each of the paths Puv , Puw and Pwv is com-
posed of two of the three subpaths Puo, Pow and Pov. Since dT (u, v) is the largest path
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in Tuvw, dT (u, v) ≥ dT (u, w). This implies that dT (u, o) + dT (o, v) ≥ dT (u, o) +
dT (o, w). Hence dT (o, v) ≥ dT (o, w). Similarly, dT (u, o)≥dT (o, w) since dT (u, v) ≥
dT (w, v). Since T is a tree, there is a path from x to o. Let ox be the first vertex in
V (Tuvw) ∩ V (Pxo) along the path Pxo from x. Then clearly ox is on Puo, Pvo or Pwo.
We first assume that ox is on Puo, as illustrated in Fig. 3(a). Then dT (v, x) ≥ dT (w, x)
since dT (w, x) = dT (x, o)+dT (w, o), dT (v, x) = dT (x, o)+dT (v, o) and dT (v, o) ≥
dT (w, o). We now assume that ox is on Pvo, as illustrated in Fig. 3(c). Then dT (u, x) ≥
dT (w, x) since dT (w, x) = dT (x, o) + dT (w, o), dT (u, x) = dT (x, o) + dT (o, u) and
dT (u, o) ≥ dT (w, o). We finally assume that ox is on Pwo, as illustrated in Fig. 3(b).
Then dT (u, x) = dT (u, o) + dT (o, ox) + dT (ox, x) and dT (w, x) = dT (w, ox) +
dT (ox, x). As dT (w, ox) ≤ dT (w, o) and dT (u, o) ≥ dT (w, o), dT (u, x) ≥ dT (w, x).
Likewise, dT (v, x) ≥ dT (w, x). Thus, in each case, at least one of u and v is at a dis-
tance from x that is either larger than or equals to the distance between w and x. �	
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Fig. 3. Different positions of x

Lemma 2. Let G = (V, E) be a PCG(T, dmin, dmax). Let a, b, c, d and e be five
leaves of T and let a′, b′, c′, d′ and e′ be five vertices of G corresponding to the five
leaves a, b, c, d and e of T , respectively. Let Pae be the largest path in the subtree of T
induced by the leaves a, b, c, d and e, and Pbd be the largest path in Tbcd. Then G has
no vertex x′ such that x′ is adjacent to a′, c′ and e′ but not adjacent to b′ and d′.
Proof. Assume for a contradiction that G has a vertex x′ such that x′ is a neigh-
bor of a′, c′ and e′ but not of b′ and d′. Let x be the leaves of T corresponding to
the vertex x′ of G. Since Pae is the largest path in T among all the paths that con-
nect a pair of leaves from the set {a, b, c, d, e}, max

y∈{a,e}
dT (x, y) ≥ max

z∈{b,c,d}
dT (x, z)

by Lemma 1. Since both a and e are adjacent to x in G, max
y∈{a,e}

dT (x, y) ≤ dmax.

This implies that dT (x, y) ≤ dmax, y ∈ {a, b, c, d, e}. Since Pbd is the largest path
in Tbcd, max

y∈{b,d}
dT (x, y) ≥ dT (x, c) by Lemma 1. Without loss of generality assume
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that dT (x, b) ≥ dT (x, c). Since b′ and x′ are not adjacent in G and dT (x, b) ≤ dmax,
dT (x, b) < dmin. Then dT (x, c) < dmin since dT (x, b) ≥ dT (x, c). Since dT (x, c) <
dmin, c′ cannot be adjacent to x′ in G, a contradiction. �	
Using Lemma 2 we now present a graph which is not a PCG as in the following
Lemma.

Lemma 3. Let G = (V, E) be a graph of 15 vertices, and let {V1, V2} be a partition of
the set V such that |V1| = 5 and |V2| = 10. Assume that each vertex in V2 has exactly
three neighbors in V1 and no two vertices in V2 has the same three neighbors in V1.
Then G is not a pairwise compatibility graph.

Proof. Assume for a contradiction that G is a pairwise compatibility graph, i.e., G =
PCG(T, dmin, dmax) for some T , dmin and dmax. Let Puv be the longest path in the
subtree of T induced by the leaves of T representing the vertices in V1. Clearly u and v
are leaves of T . Let u′ and v′ be the vertices in V1 corresponding to the leaves u and v of
T , respectively. Let Pwx be the longest path in the subtree of T induced by the leaves of
T corresponding to the vertices in V1 − {u′, v′}. Clearly w and x are also the leaves of
T , and let w′ and x′ be the vertices in V1 corresponding to w and x of T . Since |V1| = 5,
T has a leaf y corresponding to the vertex y′ ∈ V1 such that y′ /∈ {u′, v′, w′, x′}. Since
G is a PCG of T , G cannot have a vertex adjacent to u′, v′ and y′ but not adjacent to
w′ and x′ by Lemma 2. However, for every combination of three vertices in V1, V2 has
a vertex which is adjacent to only those three vertices of the combination. Thus there is
indeed a vertex in V2 which is adjacent to u′, v′ and y′ but not to w′ and x′. Hence G
can not be a pairwise compatibility graph of T by Lemma 2, a contradiction. �	
Lemma 3 immediately proves Theorem 1. Figure 4 shows an example of a bipartite
graph which is not a PCG. Quite interestingly, however, every complete bipartite graph
is a PCG. It can be shown as follows. Let Km,n be a complete bipartite graph with two
partite sets X = {x1, x2, x3, · · · , xm}, and Y = {y1, y2, y3, · · · , yn}. We construct
a star for each partite set such that each leaf corresponds to a vertex of the respective
partite set. Then we connect the bases of the stars through an edge as illustrated in
Fig. 5. Finally, we assign one as the weight of each edge. Let T be the resulting tree.
Now one can easily verify that Km,n = PCG(T, 3, 3).

1 2 3 4 5

2 3 4 5 6 7 8 9 101

aaaaa

b bbbbbbbbb

Fig. 4. Example of a graph which is not a PCG
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Fig. 5. Pairwise compatibility tree T of a complete bipartite graph Km,n

Taking the graph described in Lemma 3 as a subgraph of a larger graph, we can show
a larger class of graphs which is not PCG, as described in the following lemma.

Lemma 4. Let G = (V, E) be a graph, and let V1 and V2 be two disjoint subsets of
vertices such that |V1| = 5 and |V2| = 10. Assume that each vertex in V2 has exactly
three neighbors in V1 and no two vertices in V2 has the same three neighbors in V1.
Then G is not a pairwise compatibility graph.

Proof. Assume for a contradiction that G is PCG, i.e., G = PCG(T, dmin, dmax) for
some T , dmin and dmax. Let H be the subgraph of G induced by V1 ∪ V2. Now, let TH

be the subtree of T induced by the leaves representing the vertices in V1∪V2. According
to the definition of leaf induced subtree, for any pair of leaves u, v in TH , dTH (u, v) =
dT (u, v). Then H = PCG(TH , dmin, dmax) since G = PCG(T, dmin, dmax). How-
ever, H is not a PCG by Lemma 3, a contradiction. �	

4 Variants of Tree Power Graphs and PCGs

In this section we will show that tree power graphs and two of their extensions are PCGs.
Tree power graphs and their extensions (Steiner k-power and phylogenetic k-power

graphs) have striking resemblance, in their underlying concept, with PCGs. But does
this similarity signify any real relationship? It does indeed: we find that tree power graphs
and these two extensions are essentially PCGs. To establish this relationship of afore-
mentioned three graph classes with pairwise compatibility graphs, we introduce a gener-
alized graph class which we call “tree compatible graphs.” A graph G = (V, E) is a tree
compatible graph if there exists a tree T such that all leaves and a subset of internal nodes
of T correspond to the vertex set V of G, and for any two vertices u, v ∈ V ; (u, v) ∈ E
if and only if kmin ≤ dT (u, v) ≤ kmax. Here kmin and kmax are real numbers. We call
G the tree compatible graph of T for kmin and kmax. It is quite evident from this defi-
nition that tree compatible graph comprises tree power graphs, Steiner k-power graphs,
and phylogenetic k-power graphs. We now have the following theorem.

Theorem 2. Every tree compatible graph is a pairwise compatibility graph.

Proof. Let G be a tree compatible graph of a tree T for non-negative real numbers kmin

and kmax. Then to prove the claim, it is sufficient to construct a tree T ′ and find two
non-negative real numbers dmin and dmax such that G = PCG(T ′, dmin, dmax).
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Clearly G = PCG(T ′, dmin, dmax) for T ′ = T , dmin = kmin and dmax = kmax if
every vertex in V corresponds to a leaf in T . We thus assume that V contains a vertex
which corresponds to an internal node of T . In this case we construct a tree T ′ from T as
follows. For every internal node u of T that corresponds to a vertex in V , we introduce
a surrogate internal node u′. In addition, we transform u into a leaf node by connecting
u through an edge of weight λ with u′. Figure 6 illustrates this transformation. Here, in
addition to the leaves of T , two internal nodes d and e correspond to the vertices in V .
T ′ is the modified tree after transforming d and e into leaf nodes by replacing them by
d′ and e′, respectively.

(b)

λ

λ

(a)

d′

e′

aa bb

cc dd

ee

f f gg

hh

ii

Fig. 6. (a) T and (b) T ′

The aforementioned transformation transmutes the subset of internal nodes of T that
participates in V into a subset of leaves in T ′. Let u and v be two arbitrary nodes in T .
If u and v are both leaves in T then dT ′(u, v) = dT (u, v). If both u and v are internal
nodes of T that are contributing to V then in T ′ they are two leaf nodes, and dT ′(u, v) =
dT (u, v) + 2λ. Finally, if only one of u and v is transformed to leaf then dT ′(u, v) =
dT (u, v) + λ. We next define dmin = kmin and dmax = kmax + 2λ. Since every
vertex u ∈ V is represented as a leaf in T ′, T ′ may be a pairwise compatibility tree of
G. We will prove that T ′ is indeed a pairwise compatibility tree by showing that G =
PCG(T ′, dmin, dmax) for an appropriate value of λ. Note that we cannot simply assign
λ = 0 because, in the context of root finding as well as phylogenetics, an edge of zero
weight is not meaningful. For example, if an evolutionary tree contains zero weighted
edges then we may find a path of length zero between two different organisms, which
is clearly unacceptable. Therefore, we have to choose a value for λ more intelligently.

According to the definition of tree compatible graphs, for every pair of vertices
u, v ∈ V , (u, v) ∈ E if and only if kmin ≤ dT (u, v) ≤ kmax. Meanwhile, we have
derived T ′ from T in such a way that either the distance between u and v in T ′ re-
mains the same as in T , or increased by at most 2λ. Therefore, if we can prove that
dmin ≤ dT ′(u, v) ≤ dmax if and only if kmin ≤ dT (u, v) ≤ kmax then it will imply
that G = PCG(T ′, dmin, dmax). Depending on the nature of the change in the distance
between u and v from T to T ′, we have to consider three different cases.
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Fig. 7. (a) A tree compatible graph, (b) the corresponding tree T , and (c) the corresponding pair-
wise compatibility tree T ′

Case 1: dT ′(u, v) = dT (u, v).
In this case, three possible relationships can exist among dT (u, v), kmin and kmax.
First, if dT (u, v) < kmin then dT ′(u, v) < dmin since dmin = kmin. Next, if kmin ≤
dT (u, v) ≤ kmax then kmin ≤ dT (u, v) ≤ kmax+2λ. That implies, dmin≤dT (u, v) ≤
dmax. Finally, let dT (u, v) > kmax. Suppose p is the minimum difference between
kmax and the length of a path in T that is longer than kmax, that is p= min

u,v∈V
{dT (u, v)−

kmax} . Then dT (u, v)− kmax ≥ p. By subtracting 2λ from both side of the inequality
we get, dT (u, v) − kmax − 2λ ≥ p − 2λ. Which implies dT ′(u, v) − dmax ≥ p − 2λ.
Therefore, if we can ensure that p > 2λ then dT ′(u, v) will be larger than dmax.

Case 2: dT ′(u, v) = dT (u, v) + 2λ.
In this case, we have to consider three scenarios as we have in case 1. First, if kmin ≤
dT (u, v) ≤ kmax then kmin ≤ dT (u, v) + 2λ ≤ kmax + 2λ. Which implies dmin ≤
dT (u, v) + 2λ ≤ dmax. Hence dmin ≤ dT ′(u, v) ≤ dmax. Next, if dT (u, v) > kmax

then adding 2λ in both sides we get dT (u, v) + 2λ > kmax + 2λ. That implies
dT ′(u, v) > dmax. Finally, let assume that dT (u, v) < kmin. Suppose q is the min-
imum difference between kmin and the length of a path in T that is smaller than kmin;
that is q = min

u,v∈V
{kmin − dT (u, v)}. Then kmin − dT (u, v) ≥ q. Subtracting 2λ

from both sides of the inequality we get kmin − dT (u, v) − 2λ ≥ q − 2λ. Which
implies dmin − dT ′(u, v) ≥ q − 2λ. Therefore, if we can ensure that q > 2λ then
dT ′(u, v) < dmin.

Case 3: dT ′(u, v) = dT (u, v) + λ.
This case is similar to case 2. By following the same reasoning as in case 2, we can
show that dmin ≤ dT ′(u, v) ≤ dmax if and only if kmin ≤ dT (u, v) ≤ kmax, provided
q ≥ λ. If we can satisfy the inequality derived from case 2 (q > 2λ) then the inequality
q > λ will be immediately satisfied.

From our analysis of the three cases above, it is evident that if we can satisfy the two
inequalities p > 2λ and q > 2λ simultaneously then G = PCG(T ′, dmin, dmax). We
can do this by assigning λ any value smaller than min(p, q)/2. Thus T ′ is a pairwise
compatibility tree of G, and hence G is a PCG. �	
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Figure 7(a) illustrates an example of a tree compatible graph G = (V, E) and the
corresponding tree T is depicted in Fig. 7(b). Here kmin = 2, kmax = 4, and the
weight of every edge is one . Two internal nodes d and e along with the leaves of
T correspond to the vertices in V of G. We now transfer T into T ′ according to the
procedure described in Theorem 2. Figure 7(c) illustrates this transformation. Here,
p = q = 1 and hence we can chose any positive value less than 0.5 for λ. Let λ = 0.4
and then, dmin = kmin = 2 and dmax = kmax + 2λ = 4.8. One can now easily verify
that G = PCG(T ′, 2, 4.8).

5 Conclusion

In this paper, we have proved that all graphs are not PCGs. Additionally, we have proved
that tree power graphs and two of their extensions are PCGs. Our first proof establishes
a necessary condition over the adjacency relationships that a graph must satisfy to be a
PCG. However, a complete characterization of PCGs is not known. We left it as a future
work. It would be quite challenging and significant to develop efficient algorithms for
solving pairwise tree construction problem for other classes of graphs. Such algorithms
may come handy in both clique finding and evolutionary relationships modeling contexts.
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