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Abstract.— Species tree estimation is complicated by processes, such as gene duplication

and loss and incomplete lineage sorting (ILS), that cause discordance between gene trees

and the species tree. Furthermore, while concatenation, a traditional approach to tree

estimation, has excellent performance under many conditions, the expectation is that the

best accuracy will be obtained through the use of species tree estimation methods that are

specifically designed to address gene tree discordance. In this paper, we report on a study

to evaluate MP-EST – one of the most popular species tree estimation methods designed to

address ILS – as well as concatenation under maximum likelihood, the greedy consensus,
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and two supertree methods (MRP and MRL). Our study shows that several factors impact

the absolute and relative accuracy of methods, including the number of gene trees, the

accuracy of the estimated gene trees, and the amount of ILS. Concatenation can be more

accurate than the best summary methods in some cases (mostly when the gene trees have

poor phylogenetic signal or when the level of ILS is low), but summary methods are

generally more accurate than concatenation when there are an adequate number of

sufficiently accurate gene trees. Our study suggests that coalescent-based species tree

methods may be key to estimating highly accurate species trees from multiple loci.

(Keywords: incomplete lineage sorting, species tree estimation, supertree methods,

consensus methods, concatenation, gene tree discordance, multilocus bootstrapping,

MP-EST, MRP, MRL)

The estimation of species trees from multiple genes is necessary since true gene trees

can differ from each other and from the true species tree due to multiple processes,

including gene duplication and loss, horizontal gene transfer, and incomplete lineage

sorting (ILS) (Maddison 1997; Degnan and Rosenberg 2009; Nakhleh 2013). Because ILS is

considered to be a major challenge to species tree estimation (Edwards 2009), many

methods have been developed to estimate species trees in the presence of ILS (surveyed in

Degnan and Rosenberg (2009); Yang and Warnow (2011); Nakhleh (2013)). Some of these

methods are called “summary methods”, because they operate by combining estimated

gene trees. Earlier summary methods were based on the MDC (minimize deep coalescence)

optimization criterion (Maddison 1997; Maddison and Knowles 2006; Than and Nakhleh
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2009; Yu et al. 2011; Bayzid and Warnow 2012), a method that is statistically inconsistent

(Than and Rosenberg 2011). However, statistically consistent methods for estimating

species trees under the multi-species coalescent model have been developed recently.

Under the multi-species coalescent model (Rannala and Yang 2003), the rooted

species tree and branch lengths (in coalescent units) defines a probability distribution on

rooted gene trees, and the rooted model species tree is identifiable from the distribution of

rooted or unrooted gene trees (for five taxa or more) (Allman et al. 2011). Hence,

statistically consistent estimation of the species tree can be performed using summary

methods, which operate by combining gene trees. Statistically consistent summary

methods include ASTRAL (Mirarab et al. 2014), the population tree from BUCKy (Larget

et al. 2010), GLASS (Mossel and Roch 2010), MP-EST (Liu et al. 2010), STAR (Liu et al.

2009), STEAC (Liu et al. 2009), and STEM (Kubatko et al. 2009). Statistically consistent

species tree estimation methods, such as BEST (Liu 2008) and *BEAST (Heled and

Drummond 2010), have been developed that co-estimate the gene trees and species tree

from a set of sequence alignments. These co-estimation methods can have outstanding

accuracy, but are computationally much more expensive to run, and so far have not been

able to be used with hundreds of genes (Knowles et al. 2012; Bayzid and Warnow 2013;

Smith et al. 2014). Therefore, they cannot be used for genome-scale analyses.

Simulation studies comparing summary methods on multi-locus datasets with gene

tree incongruence due to ILS (DeGiorgio and Degnan 2010; Yang and Warnow 2011;

Leaché and Rannala 2011; Bayzid and Warnow 2013) have revealed differences in accuracy

and computational requirements. Comparisons between summary methods and

concatenation have shown mixed performance: while concatenation can be less accurate in

the presence of ILS (Edwards et al. 2007; DeGiorgio and Degnan 2010; Heled and

Drummond 2010; Liu et al. 2010; Bayzid and Warnow 2013), under different model

conditions, concatenation can have lower missing branch rates than some statistically
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consistent coalescent-based methods, even in the presence of substantial amounts of ILS

(DeGiorgio and Degnan 2010; Kimball et al. 2013; Bayzid and Warnow 2013; McCormack

et al. 2013). In general, however, not enough is known about the relative accuracy of

concatenation and summary methods under biologically realistic conditions, and the

conditions that impact the relative and absolute performance of methods.

In this paper we explore the accuracy of different techniques for estimating species

trees from multiple loci. We focus on MP-EST, one of the leading statistically consistent

summary methods, but also explore concatenation under maximum likelihood (CA-ML),

the greedy consensus, and two supertree methods (MRP (Ragan 1992) and MRL (Nguyen

et al. 2012)). We specifically seek to understand how the number of genes, amount of ILS,

and gene tree estimation error (as impacted by sequence length) affect the absolute and

relative accuracy of species trees estimated using these methods. We also evaluate the

effectiveness of multi-locus bootstrapping procedures (Seo 2008).

Methods

Datasets

We explored performance on biological and simulated datasets. For biological datasets, we

used the mammalian dataset from Song et al. (2012) and the Amniota dataset of Chiari

et al. (2012), each of which show evidence for gene tree discord consistent with ILS.

We generated a collection of simulated datasets. The model species tree was based

on the mammalian dataset of Song et al. (2012), containing 37 species and 447 orthologous

loci, and was computed using MP-EST on ML gene trees we estimated on the Song et al.

(2012) gene sequence alignments (see Fig. S1 in Supplementary Online Material (SOM)

available at http://dx.doi.org/10.5061/dryad.310q3). Gene trees were simulated down
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the model species tree under the multi-species coalescent process (Rannala and Yang 2003).

The branch lengths of these gene trees were rescaled to expected substitution units so that

they produced patterns corresponding to estimated gene trees of the biological dataset,

including divergence from the strict molecular clock. For terminal branches, we made their

lengths equal to the corresponding branch from a randomly selected gene tree estimated on

the biological dataset. We then ordered internal branches in the biological and simulated

gene trees by their lengths, and rescaled the simulated gene tree branches in each percentile

to match the length of those in the same branch length percentile of the biological gene

trees. Sequences were evolved down these true gene trees under the GTRGAMMA model.

Different model conditions were created to vary the number of genes, the sequence

length, and the amount of ILS. The sequence length was varied from 250bp to 1500bp to

generate model conditions that had varying levels of average observed gene tree estimation

error. Note that gene tree estimation error is a function of other factors besides sequence

length (e.g., the rate of evolution and branch lengths); however, we used sequence length

because it provides a straightforward mechanism for modifying gene tree estimation error.

We measured the normalized Robinson-Foulds (RF) distance (Robinson and Foulds 1981)

between true gene trees and the estimated gene trees, and used the overall average RF

distance to refer to each model condition; since the average is over all replicates, it hides

the inter- and intra-variance among replicates, which are shown in Figure S2.

Under the default (1X) ILS model conditions, the average observed gene tree

estimation error (or AGE for short) was 42%, 27%, 16%, and 12%, respectively, for 250bp,

500bp, 1000bp, and 1500bp sequences (Table 2). Hence, the 250bp model condition is a

42% AGE condition, and the 0% AGE condition refers to the case where true gene trees

were used. When we change the amount of ILS, the AGE value for 500bp alignments is

always either 26% or 27% (Table 2); however, for simplicity, we always refer to the 500bp

model condition as the 27% AGE level. See SOM Section S2 for more details.
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To decrease or increase the amount of ILS, branch lengths in the model species tree

were uniformly multiplied or divided by two or five; this resulted in five model conditions

that varied from relatively low levels to very high levels of ILS (Table 1). For example,

with 5X branches, true gene trees had only 9% average RF distance to true species trees,

while, with 0.2X branches, the average RF distance was 79% (Table 1).

Multi-locus bootstrapping

Summary methods can be used with a single maximum likelihood (ML) tree

estimate for each gene, or with a set of the ML gene trees estimated for the bootstrap

replicates of each gene. We refer to the first way of generating a set of gene trees as

BestML. We use MP-EST(BestML) to refer to MP-EST run on the set of best ML gene

trees (one tree per gene), and we refer to other methods, similarly.

We refer to the second approach for generating estimated gene trees as MLBS, for

multi-locus bootstrapping (Seo 2008). Given n genes, to create m replicate datasets, we

perform the following steps. First, we use the non-parametric bootstrapping procedure

(Felsenstein 1985) to create m pseudo-replicate datasets for each gene sequence alignment.

We then estimate gene trees for each of these pseudo-replicate alignments using maximum

likelihood, thus producing bootstrap gene trees ti,j for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then, for

j = 1 up to m, the preferred summary method (e.g., MP-EST, MRL, etc.) is run on the jth

bootstrap replicates of all n loci (i.e., {t1,j, t2,j, . . . , tn,j} is one input to the summary

method). This procedure produces m bootstrapped estimates of the species tree. A greedy

consensus (also known as the extended majority consensus tree) of these m replicate trees

can then be used as the estimate of the species tree. We refer to this greedy consensus tree

as the MLBS tree, and we note that it depends on the summary method used to generate

the bootstrap replicate species trees. (Thus, there is an MP-EST(MLBS) tree, a

Greedy(MLBS) tree, etc.) See SOM Section S2.5 for additional details.
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The MLBS approach we used only re-sampled sites. However, Seo (2008) introduced

different approaches for multi-locus bootstrapping, including re-sampling both sites and

genes (where first genes are re-sampled and then sites). Here, we focus on the site-only

re-sampling strategy, which was also used in recent studies (Chiari et al. 2012; Kumar et al.

2013). However, we present an experiment on one model condition where we examine

gene/site resampling in comparison to the site-only resampling technique, and we also show

results for both strategies on the mammalian biological dataset.

Error metric

We quantified species tree error using the missing branch rate (the percentage of branches

in the true species tree that do not appear in the estimated species tree). All estimated

species trees in these experiments were fully resolved, and hence the missing branch rate,

false positive branch rate, and normalized RF distance were all identical. In addition, we

divided species tree branches into five distinct length categories and report the error

separately for each category. Branch lengths below 0.1 coalescent units have been identified

as susceptible to high levels of ILS (Kubatko and Degnan 2007). Accordingly, we used these

branch length categories: very short (below 0.1 coalescent units), short (between 0.1 and

0.25), medium (between 0.25 and 0.625), long (between 0.625 and 1.5625), and very long

(above 1.5625). The number of branches in each category depended on the model condition

(see Table 1). In the 0.2X condition, we have adjacent branches that were very short

(Fig. S1), creating conditions that may result in the anomaly zone (i.e., where the most

frequent gene tree will not be topologically identical to the species tree) (Rosenberg 2013).

Our focus in this paper is the accuracy of the species tree topology, rather than

other aspects – such as species tree branch length estimation or branch support values. In

particular, the missing branch rate metric we used ignores branch support. However, we

also evaluated whether branch support values computed using MLBS but drawn on the
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BestML tree topology were indicative of the probability that a branch was correct. We

studied this question by binning all branch support values into 19 different bins, and for

each bin we computed the percentage of branches with support in that bin range that

appeared in the model species tree. For example, all branches between 20% and 30%

support were put into a bin, and we asked what percentage of those branches were correct;

the ideal case is that this number is between 20% and 30%. For each method, we

calculated Pearson’s correlation between support values and frequency of correctness.

Species tree methods explored

We evaluated MP-EST, two supertree methods (MRP and MRL), a consensus method

(Greedy), and concatenation (CA-ML). For biological and simulated mammalian datasets,

we used RAxML version 7.3.5 to estimate all the gene trees under the GTRGAMMA

model, with 20 runs for BestML and 200 replicates of bootstrapping (see SOM Section S2).

For the biological datasets of Chiari et al. (2012), we used the set of 100 replicates of

bootstrapped gene trees provided to us by the authors.

MP-EST.— MP-EST uses a heuristic search to find a species tree that optimizes a

maximum pseudo-likelihood score, given a set of rooted gene trees. MP-EST is statistically

consistent under the multi-species coalescent model, has good accuracy, and is fast enough

to run on hundreds to thousands of genes; for these reasons, it has been used to analyze

several multi-marker datasets (Song et al. 2012; Chiari et al. 2012; Zhong et al. 2013;

Kumar et al. 2013). We used version 1.3 of MP-EST for all the analyses, and ran MP-EST

10 times, returning the species tree with the best pseudo-likelihood score.

Greedy.— We included the greedy consensus (implemented in Dendropy (Sukumaran and

Holder 2010)) as a summary method. Although the greedy consensus of gene trees is not
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statistically consistent under the multi-species coalescent model (Degnan et al. 2009), it is

a simple and fast method.

MRP.— Matrix Representation with Parsimony (Ragan 1992), or MRP, is a standard

supertree method that operates by encoding its set of input trees as a matrix over {0, 1, ?}

characters. Each bipartition in each tree is encoded as a column in this matrix by assigning

0 to all taxa on one side, 1 to taxa on the other side, and ? to the missing taxa. This

matrix is then analyzed using maximum parsimony treating all substitutions equally.

Although it is not yet known if MRP is statistically consistent, simulations suggest it is not

(Wang and Degnan 2011). We used custom Java code, available at

https://github.com/smirarab/mrpmatrix, to compute the MRP matrix from the gene

trees, and used PAUP* (Swofford 2003) for the parsimony analysis with the standard

heuristic search.

MRL.— Matrix Representation with Likelihood (MRL) (Nguyen et al. 2012) is similar to

MRP except that once the MRP matrix is built, it is analyzed using maximum likelihood

under a symmetric binary model of sequence evolution. This application of the likelihood

model to MRP matrices lacks any theoretical justification, but a previous simulation study

(Nguyen et al. 2012) explored MRL and MRP for supertree estimation (without any ILS)

and showed that MRL can produce more accurate trees than MRP. We built the data

matrix for MRL using the same Java code used for MRP, randomly choosing for each

bipartition which side should be 0 and which side should be 1. We analyze this data matrix

using RAxML version 7.3.5 under the BINCAT model.

CA-ML.— Concatenation using maximum likelihood (CA-ML) is a widely used method;

however, simulation studies have strongly suggested that CA-ML is statistically

inconsistent and can give incorrect trees with high support (Kubatko and Degnan 2007).
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All CA-ML analyses were performed using an unpartitioned GTRGAMMA analysis using

RAxML (best of 10 runs). We did not perform bootstrapping for CA-ML on the simulated

data due to computational challenges.

Research Questions

We explored the following questions in our simulation study:

Question 1 Which set of input gene trees (BestML or MLBS) produces species trees with

lower missing branch rates?

Question 2 Are support values obtained from the multi-locus bootstrapping approach

predictive of accuracy?

Question 3 How do methods compare to each other under different model conditions?

Question 4 How well do summary methods perform in estimating rapid radiations, given

very large numbers of genes?

By definition, the MLBS tree includes all the branches in the BestML tree that have

support greater than 50%, but highly supported branches in the MLBS tree could be

absent from the BestML tree. Therefore, it is interesting to ask which approach gives a

better point estimate of the species tree (Question 1), and whether support values drawn

on BestML trees using the MLBS approach are reliable (Question 2). However, the main

objective of this study is comparing the topological accuracy of different methods under

various model conditions (Question 3). One of the specific questions we addressed is how

accurately different methods estimate the species tree in the presence of rapid radiations,

which are considered particularly difficult, partly due to the very high levels of ILS they

generate (Whitfield and Lockhart 2007). Furthermore, genome-scale data may be required
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to reconstruct rapid radiations with high accuracy (Rokas et al. 2003; Wolf et al. 2002).

Thus, we also specifically examined conditions where the amount of ILS is very high (e.g.,

as a result of rapid radiation) and thousands of genes are also available (Question 4).

We built three collections of simulated datasets. For the first collection (used for

Questions 1-3), we fixed ILS to the 1X level and varied the number of genes (25 to 800)

and gene tree AGE levels (0% to 42%). In the second collection (used for Questions 2 and

3), we used 200 genes and varied the amount of ILS (5X to 0.2X), using both true gene

trees and estimated gene trees with 27% AGE level. Finally, for the third collection (used

for Question 4), we fixed ILS to the highest level (0.2X) and varied the number of genes

from 100 to 3200, using both true gene trees and estimated gene trees with 27% AGE level.

In the first two collections, we created 20, 10 and 5 replicates, respectively, for datasets

with up to 200, 400, and 800 genes, while for the last collection we created 20, 10 and 5

replicates for datasets with up to 800, 1600, and 3200 genes, respectively.

We explored performance of all summary methods on the simulated datasets, but

we explored CA-ML only in Question 3, as it was prohibitively costly for the other

questions. For results on biological datasets, we examine MRL, MP-EST, and CA-ML.

Results

Question 1: MLBS vs. BestML

Under the 1X model condition and for each summary method and AGE level, MLBS had

lower missing branch rates for small numbers of genes, and BestML had lower error rates

on larger numbers of genes (Fig. 1), but the actual transition point depended on the

particular summary method and the AGE level. The difference in missing branch rate

between these two approaches was generally small for small numbers of genes, but was
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sometimes substantial for larger numbers of genes or when performed with less accurately

estimated gene trees. For example, MP-EST(BestML) and MP-EST(MLBS) both

produced very accurate species trees given 800 genes with 12% AGE, but there were much

larger differences on 800 genes with 27% AGE, where MLBS had 6% error and BestML

had 2.5% error.

Gene resampling While our main interest was evaluating the site-only resampling

strategy, we also evaluated the effect of using gene and site resampling instead of site-only

resampling on one model condition where BestML was more accurate than MLBS (400

genes of 27% AGE and default ILS level with 10 replicates). Due to computational

constraints, we limited the number of bootstrap replicates (for both ways of running

MLBS) to 100 for this experiment. We found that site-only and gene/site resampling

strategies produced very similar results (Fig. S3), with no statistically significant differences

for any of the four methods (p-value > 0.7 according to a Wilcoxon rank sum test (Bauer

1972)). In the case of MP-EST, gene/site and site-only MLBS returned the same consensus

tree for all 10 replicates. In addition, bootstrap support values obtained using gene/site

resampling were generally similar to those obtained using site-only resampling (see Fig.

S4). The remaining discussion focuses on BestML gene trees (see SOM for MLBS).

Question 2: Accuracy of branch support values

Pearson’s correlation coefficients between support values and frequency of

correctness were 0.99 for MRP, 0.99 for MRL, 0.96 for Greedy, and 0.89 for MP-EST.

Greedy had better correlation at the higher support levels, but poorer correlation at the

lower support levels (Fig. 2). Similarly, MP-EST correlated reasonably well at the highest

support levels, and not very well at the lower support levels (Fig. 2). Interestingly, all

methods tended to slightly over-estimate the probability of being correct for the highest
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support levels, and under-estimate the probability of being correct at the lowest support

levels. The under-estimation problem was particularly pronounced for MP-EST at the

lowest support levels; for example, branches with support in the 10-20% range appeared in

the true species tree 22% of the times for MRP, but 42% of the time for MP-EST.

We also performed gene/site resampling for one model condition; even with this

limited sample, it was clear that the problem with under-estimating support values

continued. For example, in total across the 10 replicates of the gene/site resampling

experiment, there were 13 branches in MP-EST trees that had support below 30%, and all

but one appeared in the true species tree.

Question 3: Relative topological accuracy of species tree estimations

We first fixed the amount of ILS to the 1X level, and varied the number of genes and the

AGE level (Fig. 3). Next, we fixed the number of genes to 200, and varied ILS level with

both true and estimated gene trees (Fig. 4). All p-values reported in this section are

results of two-way ANOVA tests comparing pairs of methods overall and also testing the

impact of the number of genes, AGE levels, or ILS levels on the relative performance of the

two methods (with FDR correction for multiple tests; n= 23); see Table S3 for p-values and

details of the ANOVA tests.

The general patterns were consistent with our expectations: for all methods, the

species tree estimation accuracy was improved by increasing the number of genes (Fig. 3),

but was reduced by increasing the AGE level (see Fig. S5 for correlation of average gene

tree error and the species tree error) or increasing ILS level (Fig. 4).

We next compared pairs of methods, focusing on BestML analyses (see Fig. S6 for

results using MLBS). As expected, the relative performance of methods was affected by the

model condition.
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MRL vs. MRP.— MRL had better accuracy than MRP in nearly every case, except for the

42% AGE model conditions where MRP was occasionally better than MRL (Fig. S7). We

omit MRP from the rest of this discussion.

MRL vs. MP-EST.— Overall, MRL was more accurate than MP-EST, and the difference

was statistically significant (p < 0.0001). However, there were conditions where both had

the same or nearly the same accuracy (Fig. S8). For example, under the default (1X) ILS

level with 400 or 800 true or highly accurate gene trees, both methods had excellent

accuracy. MP-EST and MRL also had excellent accuracy on smaller numbers of true gene

trees with reduced ILS (Figs. 4 and S8c). The impact of the number of genes or the AGE

level on the relative performance of MRL and MP-EST was not overall statistically

significant (p = 0.5 and p = 0.2, respectively). However, with 200 genes or more, as the

AGE level increased, the difference between MRL and MP-EST significantally increased

(p = 0.03; see Table 3 and Fig. S8b). The amount of ILS had no statistically significant

impact (p = 0.5) on the relative performance between these two methods (Fig. 4).

MRL vs. Greedy.— MRL was overall significantly more accurate than greedy (p = 0.008),

and the relative performance of methods was not impacted by the AGE level or the

number of genes (p = 1.0 and p = 0.2 respectively). Increasing ILS significantly widened

the gap (p = 0.0001) between MRL and Greedy (Fig. 4).

MRL vs. CA-ML.— MRL was overall significantly more accurate than CA-ML

(p < 0.0001). The relative performance depended on the AGE level (p = 0.001) and

amount of ILS (p = 0.03), but not on the number of genes (p = 0.9). Given relatively

accurate gene trees, MRL was always more accurate than CA-ML (Figs. 3 and S9).

However, when the AGE level was 27% or more (i.e., on 500bp or shorter alignments),

there were some cases where CA-ML was more accurate than MRL (Fig. 3). Similarly,
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when the amount of ILS was reduced to its lowest level (5X branch length), CA-ML and

MRL both had very low error, but CA-ML was slightly more accurate (Fig. 4). As the ILS

level increased, the error for CA-ML increased faster than for MRL (Fig. 4).

MP-EST vs. Greedy.— The relative performance between Greedy and MP-EST depended

on the level of ILS (p < 0.0001): Greedy was at least as accurate as MP-EST with lower

ILS, while MP-EST was more accurate with increased ILS (Fig. 4). The number of genes

may impact the relative performance (p = 0.055): Greedy was more accurate with small

numbers of genes, but with large numbers of genes, MP-EST was at least as accurate as

Greedy (Fig. 3). AGE level did not impact the relative performance (p = 0.2).

MP-EST vs. CA-ML.— CA-ML was more accurate than MP-EST under low levels of ILS,

and was less accurate under high levels of ILS (Fig. 4), and the impact of ILS on their

relative accuracy was statistically significant (p = 0.001). Interestingly, under the default

1X ILS condition, the AGE level also impacted the relative performance of MP-EST and

CA-ML (p < 0.0001), so that MP-EST was typically more accurate whenever the AGE

level was not too high (Figs. 3 and S9).

Branch length breakdown.— Generally, recovering long and very long branches was

relatively easy for all methods (Fig. 3), even from relatively few genes (e.g., 50). However,

with 42% AGE level, MP-EST failed to recover 8-14% of the long branches (even with 800

genes), while the other summary methods missed 5-8% of the long branches, and CA-ML

missed only 0-5% of the long branches (Fig. 3). Similarly, with lowered ILS (2X) and 27%

AGE, MP-EST failed to correctly recover 10% of the long branches, whereas CA-ML and

MRL missed 0% and 5% of branches, respectively (Fig. 4b).

Given less than 200 genes, none of the methods were able to recover most of the

short branches, and CA-ML and Greedy had the highest error rates for these branches.
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However, with a large enough number of genes, all methods (other than Greedy) did very

well at recovering the short branches (Fig. 3). Recovery of the very shortest branches was

the most difficult for all methods, with CA-ML having the highest missing branch rates,

followed by MP-EST and Greedy, and finally by MRL (Figs. 3 and 4b).

Question 4: High ILS and large numbers of genes

For the highest level of ILS (0.2X) and 3200 genes, MP-EST had the best accuracy

of all methods, with the largest improvement on true gene trees. Not surprisingly, the

number of genes impacted accuracy, and MRL, MRP, and MP-EST consistently improved

as the number of genes increased (Fig. 5). Interestingly, Greedy stopped improving at 400

genes, even on true gene trees. Overall, Greedy had the highest error of all four methods

on these data, and MRP had the second highest error. The differences between MRL and

MP-EST were generally small (and the standard error bars mostly overlap), but MRL was

more accurate for the smaller numbers of genes and MP-EST was more accurate for larger

numbers of genes.

Biological Dataset Results

We analyzed two biological datasets: the mammalian dataset analyzed by Song et al.

(2012) and the Amniota dataset studied by Chiari et al. (2012). Table S2 summarizes the

main discussion points presented below.

Mammalian dataset.— Song et al. (2012) observed two interesting differences between

CA-ML and MP-EST on their dataset of 37 mammalian species and 447 genes: (1)

concatenation put tree shrews (Tupaia belangeri) as sister to Glires

(Rodentia/Lagomorpha), but MP-EST put them with primates with high support, and (2)

concatenation put bats (Chiroptera) as sister to Cetartiodactyla, while MP-EST put a
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Carnivora/Perissodactyla clade as sister to Cetartiodactyla, and bats as sister to the clade

containing Cetartiodactyla, Carnivora, and Perissodactyla. Both of these relationships are

of great interest and the alternative relationships have been observed in other studies (see

Hu et al. (2012) for a comprehensive review of the placement of bats, and see Janecka et al.

(2007); Boussau et al. (2013); Kumar et al. (2013) for the placement of tree shrews).

We found 21 genes in this dataset that had mislabeled species (since confirmed by

the authors), and also identified two outlier genes that had unusually high levels of highly

supported gene tree incongruence with the remaining genes (see Fig. S10). We removed

these 23 genes, and reanalyzed the remaining 424 genes using MP-EST (using both

gene/site and site-only resampling), MRL, and CA-ML (Fig. 6). MRL(BestML),

MRL(MLBS), and MP-EST(BestML) were all topologically identical, and put tree shrews

as sister to Glires. Support in the MRL trees for this placement was 84% using site-only

resampling and 77% using gene/site resampling, both of which were reasonably high.

MP-EST(MLBS), on the other hand, placed tree shrews as sister to primates with 62%

support using both site-only resampling and gene/site resampling (note that the same

relationship had 99% support in Song et al. (2012); the exact cause of this difference is not

clear to us).

All MRL and MP-EST trees differed from the CA-ML tree with respect to the

position of bats (Myotis lucifugus and Pteropus vampyrus); CA-ML put bats with

Cetartiodactyla, and the MP-EST and MRL trees had high support ( > 82% ) for placing

bats as sister to a (Cetartiodactyla,(Perissodactyla,Carnivora)) clade. Thus, this

discordance between summary methods and the CA-ML method was robust to the choice

of the summary method (unlike the position of tree shrews). Overall, our analyses strongly

support the placement of bats as sister to a clade containing Cetartiodactyla,

Perissodactyla, and Carnivora.
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Amniota dataset.— Chiari et al. (2012) assembled a dataset of 248 genes across 16

Amniota taxa, with the goal of resolving the position of turtles relative to birds and

crocodiles. Most recent molecular studies (Zardoya and Meyer 1998; Iwabe et al. 2005;

Hugall et al. 2007) have recovered birds and crocodiles as sister groups (forming

archosaurs) and turtles as sister to this clade. Chiari et al. (2012) used MP-EST with a

site-only MLBS procedure on two sets of gene trees – one based on AA alignments, and the

other based on DNA alignments. Their MP-EST analyses resolved bird/turtle/crocodile

differently, depending on whether AA and DNA gene trees were used. The AA MP-EST

tree, just like concatenation (using Bayesian analyses) on either AA or DNA, put turtles as

sister to archosaurs with 99% support; however, the DNA MP-EST tree put turtles as

sister to crocodiles with 90% support.

We obtained the gene trees from the authors and re-analyzed the dataset using

MP-EST and MRL (Fig. 7). Our MP-EST trees were all topologically identical to those

obtained by Chiari et al. (2012) and had very similar bootstrap support values (MLBS and

BestML gave identical results). However, both AA and DNA MRL trees put turtles as

sister to archosaurs (with 100% and 89% support, respectively). Thus, unlike MP-EST, the

results of the MRL analyses did not change with the type of gene trees (AA or DNA).

Discussion

This study shows various trends, which we summarize. The first observation is that

the point estimates produced by summary methods were impacted by the choice of input

gene tree distribution (e.g., either BestML or MLBS), and that using BestML produced

more accurate species tree topologies when the number of genes was large enough, but the

MLBS approach was more accurate when the number of genes was small (Fig. 1). The fact

that BestML topologies were more accurate than MLBS topologies also means that some
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correct branches in the BestML trees have low support (at most 50%). Reassuringly, for all

summary methods, the highly supported branches in species trees computed using BestML

gene trees tended to be correct with probabilities proportional to their support (Fig. 2).

We did not perform concatenation with bootstrapping due to computational requirements,

and therefore cannot comment on the reliability of support for concatenation; however,

others have shown that concatenation can result in high support for wrong relationships in

the presence of enough ILS (Kubatko and Degnan 2007).

There were many cases where differences between summary methods were quite

small (e.g., on true gene trees with low ILS), representing a difference of one or two edges

in a species tree; whether these differences would be of scientific importance would depend

on the particular biological question. However, the differences between summary methods

increased with the amount of ILS and with average gene tree estimation error (AGE)

(which seems to affect MP-EST more than other summary methods); see correlations in

Fig. S5 and ANOVA analyses in Table S3.

One of the unexpected trends is that MRL produced more accurate species trees

than other summary methods under nearly all model conditions; the only observed

exceptions in this study had very large numbers of gene trees and the highest ILS level

(0.2X), where MP-EST was more accurate.

CA-ML implicitly assumes that there is no ILS and that all true gene trees have

identical topologies, and so it is not surprising that CA-ML can have better accuracy than

summary methods when there is low ILS, especially given limited amounts of data (Patel

et al. 2013). Our results are consistent with these observations: under very low ILS

conditions, CA-ML was often more accurate than summary methods, while under

moderate to high ILS conditions (except in the presence of high AGE levels), CA-ML was

generally not as accurate as MP-EST or MRL. Finally, we note that CA-ML analyses we

performed were unpartitioned, and it is possible that using a partitioning scheme could
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improve the accuracy of concatenation (Brandley et al. 2005) (our simulated gene trees

used the same 4x4 substitution matrix and alpha shape parameter for the gamma

distribution of rates-across-sites but had different branch lengths and topology).

The results on the two biological datasets are consistent with the simulation study.

On the mammalian dataset (with a relatively large number of genes), all analyses, except

for MP-EST(MLBS), placed tree shrews as sister to Glires. Our simulations showed that

using BestML instead of MLBS resulted in improved point estimates of the species trees

when the number of genes was sufficiently large, suggesting that the topology obtained

using MP-EST(BestML) may be more accurate than the topology obtained using

MP-EST(MLBS). Neither tree had high support for the placement of tree shrews, but our

results suggest that the multi-locus bootstrapping procedure may under-estimate support

for some correct branches in the BestML tree (Fig. 2). Based on these observations, our

analyses of the Song et al. (2012) data provide some support for the placement of tree

shrew as sister to Glires, but should not be considered definitive.

We also observed that MRL gave reasonable results on the Amniota datasets,

possibly more so than MP-EST, in that MRL gave the same results for both nucleotide or

amino-acid data while MP-EST did not. Chiari et al. (2012) had moderate numbers of

genes with moderate support (on average 50% for AA and 65% for DNA), a condition that

favors MRL over MP-EST, according to our study. Furthermore, the amino-acid and

nucleotide MRL analyses, the amino-acid MP-EST analyses, and CA-ML, are all in

agreement with most of the previous literature (Iwabe et al. 2005; Hugall et al. 2007) in

putting turtles as sister to archosaurs. Based on prior literature and our analyses, we

consider the (turtles,(birds,crocodiles)) hypothesis to be stronger than the alternatives.

Taken together, the results on biological and simulated data demonstrate that the

best summary methods can produce highly accurate estimates of species trees given a large

enough number of sufficiently accurate gene trees. However, these results also demonstrate
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that the summary methods we tested are vulnerable to gene tree estimation error, as has

been observed in prior studies (Leaché and Rannala 2011; DeGiorgio and Degnan 2013;

Patel et al. 2013; Bayzid and Warnow 2013). In addition, our study suggests that the

advantage of statistically consistent coalescent-based species tree estimation relative to

concatenation may not be obtained on datasets with small numbers of estimated gene trees

– instead, the real promise of these methods may lie in genome-scale datasets.

We offer the following possible explanation for why MP-EST did not produce highly

accurate species tree topologies under conditions with high gene tree estimation error.

MP-EST estimates species trees by finding a model species tree (rooted tree topology and

branch lengths in coalescent units) that is likely to produce the observed (estimated)

distribution on rooted three-taxon gene trees. Hence, given substantial gene tree

discordance, MP-EST will produce species trees with short branches. However, gene tree

estimation error increases the discordance between gene trees, which results in MP-EST

producing species trees with shorter branch lengths (in coalescent units) than the true

species tree branch lengths (as we saw in our study; see Fig. S11). High levels of gene tree

estimation error generally impact the estimation of underlying model parameters used by

MP-EST, and can result in increased estimation error for the species tree topology.

Consequently, although branch lengths in species trees estimated using

coalescent-based methods can be interpreted as indications of ILS levels, these

interpretations should be performed with great care. Specifically, if the gene trees are likely

to have high estimation error (suggested possibly by low bootstrap support in estimated

gene trees), then the branch lengths in the estimated species tree may be under-estimated

(relative to the true species tree branch lengths), so that the implied amount of ILS may be

over-estimated relative to the true amount. The observations here regarding MP-EST

suggest that other statistically consistent summary methods that use likelihood

calculations under the coalescent model, and that operate by combining estimated gene
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trees, may also have the same vulnerabilities.

Taking all these observations into consideration, we make the following

recommendations. First, since gene tree estimation accuracy can have a large impact on

species tree estimation accuracy, every attempt should be made to obtain estimated gene

trees that are highly accurate. It is also possible (although we did not consider this

approach in this study) that screening genes and restricting only to the most reliable gene

trees (e.g., those with highest support or highest levels of phylogenetic signal, as suggested

by Salichos and Rokas (2013)) might improve summary methods. However, screening data

presents methodological challenges, since it can bias the results (the gene tree sample may

no longer be drawn from the same distribution), and it is not always clear how gene tree

reliability can be measured. Moreover, filtering reduces the number of genes, and the

number of genes strongly impacted accuracy in our studies. Understanding the effects of

screening and developing effective filtering methods therefore need further study.

Second, because the choice between MLBS and BestML gene trees impacts the final

tree, and this study suggests that the accuracy may be improved by using BestML gene

trees (especially for large numbers of genes), we recommend that both types of analysis be

employed and the resultant species tree estimates compared. Relationships that have high

support in MLBS but are absent from BestML analyses should be treated with caution.

Third, we recommend that many approaches to species tree estimation be

considered, including methods such as MP-EST that are statistically consistent, but also

considering concatenation and simple summary methods such as MRL. When analyses do

not agree, consideration for the causes for the disagreement may indicate which analyses is

likely to be more reliable, or suggest the need for additional data (e.g., more genes or taxa)

or better data (e.g., more accurate alignments and more accurate gene trees).

In this study, we used sequence length to vary gene tree estimation error; however,

the sequence length needed to provide a given level of gene tree estimation error is
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impacted by substitution rates (Kuhner and Felsenstein 1994), branch lengths, missing

data (Lemmon et al. 2009), and number of taxa. For example in rapid radiations, gene tree

branch lengths tend to be very short, which increases the difficulty in producing highly

accurate gene trees - even given long sequences. Also, recombination-free sequences can be

quite short, and increasing the length of each marker increases the risk of running into

recombination events, and so has the potential to reduce accuracy (Edwards 2009) (but

also see Lanier and Knowles (2012) for a contrasting point of view).

Although this study explored performance on large numbers of genes, we did not

explore performance on large numbers of taxa, nor under conditions with missing data (i.e.,

gene trees with some missing taxa), nor on datasets where the gene trees cannot be rooted.

Thus, the results of this study should be interpreted with some care, and it is possible that

relative performance of methods could change under these more challenging conditions. For

example, MP-EST (since it requires rooted gene trees) can be impacted by missing data, at

least when the missing data make it difficult to root the estimated gene trees correctly

(Springer and Gatesy 2014). In addition, the limitation in this study to datasets with at

most 37 species means that the relative performance of MP-EST, MRL, Greedy, and

CA-ML on datasets with substantially larger numbers of species cannot be predicted.

Indeed, there is a possibility that MP-EST, since it uses a heuristic to search for maximum

pseudo-likelihood species trees, may be impacted in terms of computation time as well as

its ability to find good solutions to its optimality criterion. This issue will need to be

explored using additional simulated and biological datasets with larger numbers of species.

Finally, we did not explore conditions where gene tree discordance was partially due to

other biological causes, such as duplication and loss, gene flow (Leaché et al. 2014),

horizontal gene transfer, or hybridization (Nakhleh 2013), and the relative performance of

coalescent-based methods and concatenation might change under those more complicated

conditions.
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Leaché, A. D. and B. Rannala. 2011. The accuracy of species tree estimation under

simulation: a comparison of methods. Systematic Biology 60:126–37.

Lemmon, A. R., J. M. Brown, K. Stanger-Hall, and E. M. Lemmon. 2009. The effect of

ambiguous data on phylogenetic estimates obtained by maximum likelihood and

Bayesian inference. Systematic Biology 58:130–45.

Liu, L. 2008. BEST: Bayesian estimation of species trees under the coalescent model.

Bioinformatics 24:2542–2543.

Liu, L., L. Yu, and S. V. Edwards. 2010. A maximum pseudo-likelihood approach for

estimating species trees under the coalescent model. BMC Evolutionary Biology 10:302.

Liu, L., L. Yu, D. K. Pearl, and S. V. Edwards. 2009. Estimating species phylogenies using

coalescence times among sequences. Systematic Biology 58:468–77.

Maddison, W. and L. Knowles. 2006. Inferring phylogeny despite incomplete lineage

sorting. Systematic Biology 55:21–30.

Maddison, W. P. 1997. Gene trees in species trees. Systematic Biology 46:523–536.

McCormack, J. E., M. G. Harvey, B. C. Faircloth, N. G. Crawford, T. C. Glenn, and R. T.

Brumfield. 2013. A phylogeny of birds based on over 1,500 loci collected by target

enrichment and high-throughput sequencing. PLoS One 8:e54848.

Mirarab, S., R. Reaz, M. Bayzid, T. Zimmermann, M. Swenson, and T. Warnow. 2014.

ASTRAL: genome-scale coalescent-based species tree estimation. Bioinformatics (in

press).

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


Mossel, E. and S. Roch. 2010. Incomplete lineage sorting: consistent phylogeny estimation

from multiple loci. IEEE/ACM Transactions on Computational Biology and

Bioinformatics 7:166–71.

Nakhleh, L. 2013. Computational approaches to species phylogeny inference and gene tree

reconciliation. Trends in Ecology and Evolution 28:719–728.

Nguyen, N., S. Mirarab, and T. Warnow. 2012. MRL and SuperFine+ MRL: new supertree

methods. Algorithms for Molecular Biology 7:3.

Patel, S., R. T. Kimball, and E. L. Braun. 2013. Error in phylogenetic estimation for

bushes in the tree of life. Journal of Phylogenetics and Evolutionary Biology 1:110.

Ragan, M. A. 1992. Phylogenetic inference based on matrix representation of trees.

Molecular Phylogenetics and Evolution 1:53–58.

Rannala, B. and Z. Yang. 2003. Bayes estimation of species divergence times and ancestral

population sizes using DNA sequences from multiple loci. Genetics 164:1645–1656.

Robinson, D. and L. Foulds. 1981. Comparison of phylogenetic trees. Mathematical

Biosciences 53:131–147.

Rokas, A., B. L. Williams, N. King, and S. B. Carroll. 2003. Genome-scale approaches to

resolving incongruence in molecular phylogenies. Nature 425:798–804.

Rosenberg, N. A. 2013. Discordance of species trees with their most likely gene trees: A

unifying principle. Molecular Biology and Evolution 30:2709–2713.

Salichos, L. and A. Rokas. 2013. Inferring ancient divergences requires genes with strong

phylogenetic signals. Nature 497:327–31.

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


Seo, T. K. 2008. Calculating bootstrap probabilities of phylogeny using multilocus

sequence data. Molecular Biology and Evolution 25:960–971.

Smith, B. T., M. G. Harvey, B. C. Faircloth, T. C. Glenn, and R. T. Brumfield. 2014.

Target capture and massively parallel sequencing of ultraconserved elements for

comparative studies at shallow evolutionary time scales. Systematic Biology 63:83–95.

Song, S., L. Liu, S. V. Edwards, and S. Wu. 2012. Resolving conflict in eutherian mammal

phylogeny using phylogenomics and the multispecies coalescent model. Proceedings of

the National Academy of Sciences 109:14942–7.

Springer, M. S. M. and J. Gatesy. 2014. Land plant origins and coalescence confusion.

Trends in Plant Science 19:267–9.

Sukumaran, J. and M. Holder. 2010. Dendropy: a Python library for phylogenetic

computing. Bioinformatics 26:1569–71.

Swofford, D. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods).

Version 4. Sinauer Associates, Sunderland, Massachussets.

Than, C. and L. Nakhleh. 2009. Species tree inference by minimizing deep coalescences.

PLoS Computational Biology 5:e1000501.

Than, C. and N. A. Rosenberg. 2011. Consistency Properties of Species Tree Inference by

Minimizing Deep Coalescences. Journal of Computational Biology 18:1–15.

Wang, Y. and J. Degnan. 2011. Performance of Matrix Representation with Parsimony for

inferring species from gene trees. Statistical Applications in Genetics and Molecular

Biology 10:1–39.

Whitfield, J. and P. Lockhart. 2007. Deciphering ancient rapid radiations. Trends in

Ecology and Evolution 22:258–265.

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


Wolf, Y., I. Rogozin, N. Grishin, and E. Koonin. 2002. Genome trees and the tree of life.

Trends in Genetics 18:472–479.

Yang, J. and T. Warnow. 2011. Fast and accurate methods for phylogenomic analyses.

BMC Bioinformatics 12:S4.

Yu, Y., T. Warnow, and L. Nakhleh. 2011. Algorithms for MDC-based multi-locus

phylogeny inference: beyond rooted binary gene trees on single alleles. Journal of

Computational Biology 18:1543–59.

Zardoya, R. and A. Meyer. 1998. Complete mitochondrial genome suggests diapsid

affinities of turtles. Proceedings of the National Academy of Sciences 95:14226–14231.

Zhong, B., L. Liu, Z. Yan, and D. Penny. 2013. Origin of land plants using the multispecies

coalescent model. Trends in Plant Science 18:492–495.

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


Table 1: Levels of simulated ILS, breakdown of branches by length, and true gene tree
discordance.

ILSa very short b short medium long very long avg. RFc min. RFd

0.2X 9 8 16 1 0 79% 50% (2)
0.5X 5 4 8 16 1 54% 29% (12)
1X 3 2 6 10 13 32% 3% (1)
2X 0 4 2 7 21 18% 0% (1)
5X 0 0 4 2 28 9% 0% (115)

a1X is the default ILS condition, corresponding to the species tree estimated on the mammalian dataset
using MP-EST; rescaled lengths result in reduced ILS (2X and 5X) and increased ILS (0.5X and 0.2X).

bThe number of branches in the model species tree that fall into various categories of length (in coalescent
units): very short (bl < 0.1), short (0.1 ≤ bl < 0.25), medium (0.25 ≤ bl < 0.625), long (0.625 ≤ bl < 1.5625),
and very long (1.5625 ≤ bl).

cThe average RF distance between the true model species tree and true gene trees (over 4000 gene trees).
dThe minimum RF distance; the number of genes with the minimum distance is shown parenthetically.

Table 2: Simulated model conditions, gene tree estimation error (AGE), and bootstrap
support (BS).

ILS Sequence length Number of genes AGEa avg. BSb

0.2X 500bp 100,200,400,800,1600,3200 26% 64%
0.5X 500bp 200 26% 64%
1X 250bp 25,50,100,200,400,800 42% 46%
1X 500bp 25,50,100,200,400,800 27% 63%
1X 1000bp 25,50,100,200,400,800 16% 79%
1X 1500bp 25,50,100,200,400,800 12% 84%
2X 500bp 200 27% 64%
5X 500bp 200 26% 63%

aMeasured as the average RF distance between true gene trees and estimated gene trees.
bAverage bootstrap support over all branches of all the gene trees. Bootstrap support values are measur-

able on biological datasets and are correlated with gene tree estimation error. The mammalian dataset had
average BS of 71%, putting it in between the 1X 500bp and 1000bp model conditions.
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Figure 1: MLBS vs. BestML gene tree strategies on the simulated mammalian
datasets. We compare species trees estimated using the two types of gene tree inputs: best
maximum likelihood estimates of the gene sequence alignments (BestML) analyzed using the
summary method, or the greedy consensus of the species trees estimated using the summary
methods on the multi-locus bootstrap replicate datasets (MLBS). Tree error is measured
using the missing branch rate (i.e. false negative rate), which was always identical to the
RF rate on these data. Average error is shown over 20 replicates for model conditions with
25-200 genes, 10 replicates for 400 genes, and 5 replicates for 800 genes. Rows correspond
to various levels of gene tree estimation error (see Table 2).

Figure 2: Relationship between bootstrap support calculations (obtained us-
ing multi-locus bootstrapping drawn on BestML trees) and frequency of
correct branches. Each box shows the aggregated results on all model conditions
of the mammalian simulated datasets. Support values are binned with the breaks
0, 10, 20, 30, 40, 50, 55, 65, 75, 80, 85, 90, 92, 94, 96, 98, 100, and with each bin including the
right value and excluding the left value (e.g., the first bin is [0,10), and the last bin only
includes branches with 100% support). For each bin, the figures show the percentage of
branches in the estimated species trees that were correctly estimated. The diagonal y = x

lines show the ideal scenario.
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Figure 3: Comparing methods on mammalian simulated datasets. We compare three
summary methods (MRL, Greedy, and MP-EST) on BestML gene trees and also CA-ML.
The impact of changing the number of genes and average gene tree estimation error (AGE)
is shown. The amount of ILS is fixed at the 1X level. Tree estimation error is computed
using the missing branch rate with respect to all branches of the model species (top row),
and also with respect to various categories of branches (remaining rows). Average error
over multiple replicate runs is shown and error bars show standard error (see Table S1 for
standard deviation). We had 20 replicates for model conditions with 25 to 200 genes, 10
replicates for 400 genes, and 5 replicates for 800 genes.

Figure 4: Impact of ILS level on species tree estimation. We compare the performance
of MRL with Greedy, MP-EST, and CA-ML on the simulated mammalian dataset using
true and estimated (BestML) gene trees with 26-27% estimation error Missing branch rate is
computed with respect to (a) all branches of the model species tree or (b) various categories
of branch length. We show the average tree error (bars indicate standard error) over 20
replicates of 200 genes (see Table S1 for standard deviation).

Figure 5: Comparing performance of various methods on up to 3200 gene trees,
simulated under 0.2X ILS level (i.e. the highest levels of ILS). Results for 100
to 800 genes are over 20 replicates, 1600 genes over 10 replicates, and 3200 genes over 5
replicates. Lines show average error and error bars show standard error (see Table S1 for
standard deviation).

Figure 6: Mammals biological dataset analyses. We analyzed the dataset in Song et al.
(2012) using MRL, MP-EST, and CA-ML. Edges with no label have 100% support. Dashed
branches are those that differ across various analyses. For summary methods, two support
values are shown: the first value is based on site-only resampling bootstrapping and the
second value is based on both gene and site resampling.

Figure 7: Amniota biological dataset analyses. Trees estimated from DNA and AA
gene trees are shown for two summary methods: MP-EST (a and b) and MRL (c and d); in
addition, Bayesian concatenation trees estimated by Chiari et al. (2012) are also reproduced
here for comparison (e and f). Branches resolving the birds/crocodiles/turtles relationship
are shown as dashed.

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


Greedy MRP MRL MP−EST

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

0.00

0.05

0.10

0.15

1
2

%
 A

G
E

1
6

%
 A

G
E

2
7

%
 A

G
E

4
2

%
 A

G
E

25 50 10
0

20
0

40
0

80
0 25 50 10
0

20
0

40
0

80
0 25 50 10
0

20
0

40
0

80
0 25 50 10
0

20
0

40
0

80
0

Number of genes

Tr
ee

E
rr

or
(m

is
si

ng
br

an
ch

ra
te

)

BestML MLBS (greedy consensus)

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


MRP MRL

Greedy MP−EST

100%

  75%

  50%

  25%

    0%

0 10 20 30 40 50 55 60 65 70 75 80 85 90 92 94 96 98 10
0

Bootstrap support (percentage)

P
er

ce
nt

C
or

re
ct

0 10 20 30 40 50 55 60 65 70 75 80 85 90 92 94 96 98 10
0

ρ=0.9866 ρ=0.9854

ρ=0.8939ρ=0.9641

100%

  75%

  50%

  25%

    0%

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


12% AGE

CA-ML

25 50 100 200 400 80025 50 100 200 400 80025 50 100 200 400 80025 50 100 200 400 80025 50 100 200 400 800
Number of genes

all branches
True gene tree (0% AGE) 16% AGE 27% AGE 42% AGE

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


ILS Level (branch length scaling)

True gene trees (0% AGE) Estimated gene trees (27% AGE)
a) Error for all branches

b) Error breakdown by branch length (27% AGE)

CA-ML

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


Estimated gene trees (26% AGE)True gene trees (0% AGE)

0.00

0.05

0.10

0.15

0.20

100 200 400 800 1600 3200 100 200 400 800 1600 3200
Number of genes

Tr
e
e
 e

rr
o
r 

(m
is

si
n

g
 b

ra
n

ch
 r

a
te

)

Greedy MRP MRL MP−EST

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


Gorilla gorilla

Rattus

Homo sapiens

Procavia capensis

Spermophilus tridecemlineatus

Musmusculus

Felis catus

Myotis lucifugus

Macacamulatta

Bos taurus

Dipodomys ordii

Dasypus novemcinctus

Ochotona princeps

Tursiops truncatus

Microcebusmurinus

Erinaceuseuropaeus

Tarsius syrichta

Macropus eugenii
Monodelphis domestica

Cavia porcellus

Pteropus vampyrus

Otolemur garnettii

Sus scrofa

Gallus gallus

Choloepus hoffmanni

Pongopygmaeus

Canis familiaris

Echinops telfairi

Vicugna pacos

Equus caballus

Ornithorhynchus anatinus

Loxodonta africana

Callithrix jacchus

Sorexaraneus

Oryctolagus cuniculus

Tupaia belangeri

Pan troglodytes

P
rim

a
te
s

B
a
ts

C
e
ta
rtio

d
a
ctyla

38/38

Bos taurus

Sus scrofa

Dasypus novemcinctus

Pan troglodytes

Macropus eugenii

Otolemur garnettii

Erinaceuseuropaeus

Loxodonta africana

Choloepus hoffmanni

Vicugna pacos

Sorexaraneus

Canis familiaris

Echinops telfairi

Monodelphis domestica

Rattus

Pteropus vampyrus

Felis catus

Tursiops truncatus

Myotis lucifugus

Cavia porcellus

Musmusculus

Ornithorhynchus anatinus
Gallus gallus

Microcebusmurinus

Tupaia belangeri

Procavia capensis

Macacamulatta
Callithrix jacchus

Equus caballus

Dipodomys ordii

Tarsius syrichta

Ochotona princeps
Oryctolagus cuniculus

Gorilla gorilla

Homo sapiens

Pongopygmaeus

Spermophilus tridecemlineatus

62/62

89/81

95/90

P
rim

a
te
s

B
a
ts

C
e
ta
rtio

d
actyla

Gorilla gorilla

Rattus

Homo sapiens

Procavia capensis

Spermophilus tridecemlineatus

Musmusculus

Felis catus

Myotis lucifugus

Macacamulatta

Bos taurus

Dipodomys ordii

Dasypus novemcinctus

Ochotona princeps

Tursiops truncatus

Microcebusmurinus

Erinaceuseuropaeus

Tarsius syrichta

Macropus eugenii
Monodelphis domestica

Cavia porcellus

Pteropus vampyrus

Otolemur garnettii

Sus scrofa

Gallus gallus

Choloepus hoffmanni

Pongopygmaeus

Canis familiaris

Echinops telfairi

Vicugna pacos

Equus caballus

Ornithorhynchus anatinus

Loxodonta africana

Callithrix jacchus

Sorexaraneus

Oryctolagus cuniculus

Tupaia belangeri

Pan troglodytes

9 P
rim

a
te
s

B
a
ts

C
e
ta
rtio

d
a
ctyla

84/77

Macacamulatta

Pan troglodytes

Ochotona princeps

Choloepus hoffmanni
Dasypus novemcinctus

Dipodomys ordii

Felis catus

Oryctolagus cuniculus

Erinaceuseuropaeus

Ornithorhynchus anatinus

Pteropus vampyrus

Pongopygmaeus

Gallus gallus

Loxodonta africana

Gorilla gorilla

Otolemur garnettii

Cavia porcellus
Spermophilus tridecemlineatus

Macropus eugenii

Microcebusmurinus

Tupaia belangeri

Canis familiaris

Tarsius syrichta

Rattus

Tursiops truncatus

Myotis lucifugus

Procavia capensis

Musmusculus

Sus scrofa

Homo sapiens

Monodelphis domestica

Callithrix jacchus

Equus caballus

Vicugna pacos

Sorexaraneus

Echinops telfairi

Bos taurus

76

C
e
ta
rtio

d
a
ctyla

P
rim

a
te
s

B
a
ts

88

a) MP-EST (BestML) b) MP-EST (MLBS)

d)c) MRL(MLBS) &
MRL(BestML)

CA-ML

81/84

96/88

98/95

92/82

89/81

81/84

95/90

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/


99

54

99
89

53

90

98

97

65

99

85 99

89

69

a) MPEST on AA b) MPEST on DNA

d) MRL on DNAc) MRL on AA

e) Concatenation 
(Bayesian) on AA 
Chiari et al .(2012)

0.97 Emys
Chelonoidis
Caretta
Phrynops
Alligator
Caiman
Gallus
Taeniopygia
Podarcis
Anolis
Python
Homo
Monodelphis
Ornithorhynchus
Xenopus
protopterus

0.84

f) Concatenation 
(Bayesian) on DNA 
Chiari et al .(2012)

Emys
Chelonoidis
Caretta
Phrynops
Alligator
Caiman
Gallus
Taeniopygia
Python
Anolis
Podarcis
Homo
Monodelphis
Ornithorhynchus
Xenopus
protopterus

0.99

Emys
Chelonoidis
Caretta
Phrynops
Alligator
Caiman
Gallus
Taeniopygia
Podarcis
Python
Anolis
Homo
Monodelphis
Ornithorhynchus
Xenopus
protopterus

Emys
Chelonoidis
Caretta
Phrynops
Alligator
Caiman
Gallus
Taeniopygia
Podarcis
Python
Anolis
Homo
Monodelphis
Ornithorhynchus
Xenopus
protopterus

Emys
Chelonoidis
Caretta
Phrynops
Alligator
Caiman
Gallus
Taeniopygia
Podarcis
Python
Anolis
Homo
Monodelphis
Ornithorhynchus
Xenopus
protopterus

Emys
Chelonoidis
Caretta
Phrynops
Alligator
Caiman
Gallus
Taeniopygia
Podarcis
Python
Anolis
Homo
Monodelphis
Ornithorhynchus
Xenopus
protopterus

 at U
niversity of T

exas at A
ustin on N

ovem
ber 18, 2014

http://sysbio.oxfordjournals.org/
D

ow
nloaded from

 

http://sysbio.oxfordjournals.org/



